II. Spatial Systems

A. Cellular Automata
B. Pattern Formation

C. Slime Mold
D. Excitable Media
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A. Cellular Automata
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Cellular Automata (CASs)

* Invented by von Neumann in 1940s to study
reproduction

* He succeeded in constructing a self-reproducing
CA
 Have been used as:

— massively parallel computer architecture
— model of physical phenomena (Fredkin, Wolfram)

e Currently being investigated as model of quantum
computation (QCAS)
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Structure

e Discrete space (lattice) of regular cells
— 1D, 2D, 3D, ...
— rectangular, hexagonal, ...

e At each unit of time a cell changes state in
response to:

— 1ts own previous state
— states of neighbors (within some “radius™)

e All cells obey same state update rule
— an FSA

e Synchronous updating

1/26/20



Example:
Conway’s Game of Life

* Invented by Conway in late 1960s
e A simple CA capable of universal computation

e Structure:
— 2D space (periodic or unbounded)
— rectangular lattice of cells
— binary states (alive/dead)
— neighborhood of 8 surrounding cells (& self)

— simple population-oriented rule

1/26/20



State Transition Rule

e Live cell has 2 or 3 live neighbors
— stays as 1s (stasis)

e Live cell has < 2 live neighbors
— dies (loneliness)

e Live cell has > 3 live neighbors
— dies (overcrowding)

 Empty cell has 3 live neighbors
— comes to life (birth)

1/26/20



Demonstration of Life

Run Netl.ogo Life

Oor
<web.eecs.utk.edu/~mclennan/Classes/420-527/NetlLogo/Life.html>

1/26/20 E


http://../NetLogo%2520Simulations/Life.nlogo
http://web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/Life.html

Breeder using Golly

Generaton =0 Popuia ton =4, 060 w1 Stepw 100

1/26/20 http://golly.sourceforge.net/ 8
(videos: https://www.youtube.com/playlist?list=PLu9PfMOtQsVzSbY8zhOYLKnT4alL.MY4rTh )



http://golly.sourceforge.net/
https://www.youtube.com/playlist%3Flist=PLu9PfMOtQsVzSbY8zh0YLKnT4aLMY4rTh

Banner

I golly-txckersie [Life]

Generaton=0 Popuiation=5,043 SCae=27 111 Step= 100 Xf -
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Lite Stmulating Life
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Universal Turing Machine
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Some Observations About Life

1. Long, chaotic-looking initial transient
— unless initial density too low or high

2. Intermediate phase
— 1solated islands of complex behavior

— matrix of static structures & “blinkers”
— gliders creating long-range interactions

3. Cyclic attractor
— typically short period

1/26/20 12



From Life to CAs in General

 What gives Life this very rich behavior?

e Is there some simple, general way of

characterizing CAs with rich behavior?

e It belongs to Woltram’s Class IV

1/26/20
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The four classes of feedback behaviour

(a) Fixed points

-

(b) Simple periodic orbits l \\ ; < \/\/\/\/\M /\ W

(c) Period-n orbit I N \NW N \/\
.

1/26/20 fig. from Flake via EVALife 14

(d) Chaos




Woltram’s Classification

e (Class I: evolve to fixed, homogeneous state
~ limit point

e (Class II: evolve to sitmple separated periodic
structures
~ limit cycle

e (Class III: yield chaotic aperiodic patterns
~ strange attractor (chaotic behavior)

e Class IV: complex patterns of localized structure
~ long transients, no analog in dynamical systems

1/26/20 15



Why Try to Predict CA behavior?

e CAs can model spatial systems in which global
effects emerge from local interactions
e Systems in which an effect may spread
— Information, disease, populations, fires
e Systems with complex patterns of coordination
and control
— Computers, animal bodies, animal colonies
e Valuable to predict global effects of particular
patterns of local interaction

— For either prediction or design
1/26/20 16



Langton’s Investigation

Under what conditions can we expect a
complex dynamics of information to emerge

spontaneously and come to dominate the
behavior of a CA?

1/26/20 17



Approach

e Investigate 1D CAs with:
— random transition rules

— starting 1in random 1nitial states

e Systematically vary a simple parameter
characterizing the rule

e Evaluate qualitative behavior (Wolfram
class)

1/26/20

18



Why a Random Initial State?

 How can we characterize typical behavior
of CA?

e Special initial conditions may lead to
special (atypical) behavior

 Random initial condition effectively runs
CA 1n parallel on a sample of initial states

e Addresses emergence of order from
randomness

1/26/20 19



Assumptions

e Periodic boundary conditions
— no special place

e Strong quiescence:

— 1f all the states 1n the neighborhood are the same, then
the new state will be the same

— persistence of uniformity
e Spatial isotropy:

— all rotations of neighborhood state result in same new
state

— no special direction

e Totalistic [not used by Langton]:
— depend only on sum of states in neighborhood
— 1mplies spatial 1sotropy

1/26/20 20



Langton’s Lambda

e Designate one state to be quiescent state
e et K = number of states

e Let N=2r + 1 = size of neighborhood

e Let 7= K" = number of entries in table

* Let n, = number mapping to quiescent state
 Then

=T—nq
T

A

1/26/20 21



Range of Lambda Parameter

e If all configurations map to quiescent state:
A=0

e If no configurations map to quiescent state:
=

e If every state 1s represented equally:
A=1-1/K

e A sort of measure of “excitability”

1/26/20 22



Example

e States: K=15

e Radius: r=1

e Initial state: random

e Transition function: random (given A)
e Totalistic

e Simple quiescence

1/26/20 23



Demonstration of
1D Totalistic CA

Run Netl.ogo 1D CA General Totalistic

or

<web.eecs.utk.edu/~mclennan/Classes/420-527/NetlLogo/
CA 1D General Totalistic.html>

1/26/20 24


http://../NetLogo%2520Simulations/CA%25201D%2520General%2520Totalistic.nlogo
http://web.eecs.utk.edu/~mclennan/Classes/420-527/NetLogo/CA%25201D%2520General%2520Totalistic.html

Class I (AL =0.3)
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Class I (A = 0.3) Closeup
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Class II (A = 0.66)
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0.66) Closeup

Class II (A

28
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Class II (A = 0.8) Closeup

period = 20
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Class II (A = 0.5) Closeup
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Class II (A =0.31) Closeup
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Class III (A =0.5)
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Class III (A = 0.5) Closeup
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Class IV (L =0.6)
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Class IV (A=0.7)
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Class IV (A=0.7)
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Class IV (L =0.3)
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Class III-IV (A =0.9)

Py
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Class IV (A = 0.34)
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Class IV Shows Some of the
Characteristics of Computation

e Persistent, but not perpetual storage
 Terminating cyclic activity

e Nonlocal transfer of control and

information

1/26/20 48
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A Computational Medium

e Storage of Information
e Transfer of Information

e Modification of Information

49



Class IV and Biology

* We expect biological material to exhibit
Class IV behavior

e Stable
e But not too rigid
e Nonlocal coordination

e Solids, liquids, and “‘soft matter”

1/26/20 50



Complex Systems Mediated by
[Local Interactions
e Many systems can be modeled by CAs

 We can expect their long term behavior to fall into
three categories:

— Activity dies down or becomes locally repetitive (Class
I or II)

— Activity becomes globally chaotic with no discernable
long-range or long-term patterns (Class III)

— Activity is complex with long-range and long-term
patterns of interaction (Class IV)

1/26/20 51



A\ of Life

e For Life, A =0.273

e which 1s near the critical region for 2D CAs
with:
K=2
=0

1/26/20 52



Project 1

Investigation of relation between Wolfram
classes, Langton’s A, and entropy in 1D CAs

Due Feb. 5
Information 1s on Canvas

Read it over and email questions or ask 1n
class

1/26/20
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Transient Length (1, II)

transient

1/26/20
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Transient Length (11I)

transient
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Shannon Information
(very briefly!)

e Information varies directly with surprise

e Information varies inversely with
probability

e Information i1s additive

e .. The information content of a message 1s
proportional to the negative log of its
probability

I{S} = —lgPr{S}

1/26/20 56



Entropy

e Suppose have source S of symbols from
ensemble {s,, S, ..., Sy}

e Average information per symbol:
N N
Ek=1Pr{sk}I{sk} =Ek=lPr{sk}(—lgPr{sk})
e This 1s the entropy of the source:

H{S} = —EllPr{sk}lgPr{sk}

1/26/20
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Maximum and Minimum
Entropy

e Maximum entropy 1s achieved when all
signals are equally likely

No ability to guess; maximum surprise
Hipax =1g N

e Minimum entropy occurs when one symbol
1s certain and the others are impossible

No uncertainty; no surprise
H min — O

1/26/20 58



Entropy Examples (rel. freq.)

w By oAl

H = 2.0 bits H = 2.0 bits H =1.9 bits
H =1.0 bits H = 0.3 bits H = 0.0 bits

1/26/20 59



Entropy of Transition Table

 Among other things, entropy 1s a way to
measure the uniformity of a distribution

H = _Epilgpi

e Distinction of quiescent state 1s arbitrary
e [et n, = number mapping into state k
- Thenpk=nk/T
1 K
H=1gT —— Y n lgn
g T E 181

k=1

1/26/20 60



Entropy Range
e Maximum entropy (A =1 — 1/K):

as uniform as possible
all n, = T/K
Hax =1g K

e Minimum entropy (A=0or A = 1):

as non-uniform as possible
onen,=1T

all other n. =0 (r # s)
L= )

1/26/20
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Uses of Entropy

e Entropy 1s a measure of how uniform or
skewed a probability distribution 1s

e It has many uses, e.g.:
 Measuring uniformity of rule table

 Measuring order in cell states

— ACI'OSS Space

— across time

1/26/20 62



Further Investigations by
LLangton

e 2-D CAs

e K=8

e N=5

e 64 X 64 lattice

e periodic boundary conditions

e measure average cell entropy
— after 500 steps

1/26/20 63



Avg. Cell Entropy vs. A
(K=8, N=5)
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Avg. Cell Entropy vs. A
(K=8, N=5)

Average H versus A
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Avg. Cell Entropy vs. A
(K=8, N=5)
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Avg. Cell Entropy vs. A A
(K=8, N=5)
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Avg. Cell Entropy vs. A
(K=8, N=5)

Average H versus A
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Avg. Cell Entropy vs. A A
(K=8, N=5)

Average H versus A A
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Entropy of Independent Systems

e Suppose sources A and B are independent
* Letp;=Pr{a;} and g, = Pr{b,}
* Then Pr{a;, b;} = Pr{a;} Pr{b} =p;q,

H(A,B)= —EPr(aj,bk)lgPr(aj,bk)
j.k
==Y palg(pa)=-) ra.(lgp, +2q,)
Jsk Jsk

==Y p;lgp; - Y,4.1gq, = H(A)+ H(B)
f k
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Mutual Information

* Mutual information measures the degree to
which two sources are not independent

* A measure of their correlation
I(A,B)=H(A)+ H(B)- H(A,B)

 [(A,B) =0 for completely independent
sources

e [(A.B) = H(A) = H(B) for completely
correlated sources

1/26/20 71



Avg. Mutual Info vs. A
(K—4 N—S)
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Avg. Mutual Info vs. AA
(K=4, N=5)
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Mutual Information vs.
Normalized Cell Entropy
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Critical Entropy Range

e Information storage involves lowering
entropy

e Information transmission involves raising
entropy

e Information processing requires a tradeoft
between low and high entropy

1/26/20
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Avg. Transient Length vs. A
(K=4, N=5)
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Complexity vs. A
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Phase Transitions

* First-order phase transitions

— Change (first derivative) 1s discontinuous

* Second-order (continuous) phase transitions

— Change (first derivative) 1s continuous, but
second derivative 1s discontinuous

— Infinite correlation lengths
— Critical slowing (long transients)

— Statistical measures converge poorly (wide
distributions)

1/26/20 78



Computation and Second-order
Phase Transitions

* Long transients and long correlation lengths

e Difficulty predicting ultimate state (halting
problem)

e Computation requires information storage and
transmission

— correlation too weak = independent sites
= little transmission

— correlation too strong = distant sites mimic each other

1/26/20 i



Schematic of
CA Rule Space vs. A

/

1% order phase transition >

Periodic Chaotic

Complex

27 order phase transition>

0.0 A 1.0

1/26/20 Fig. from Langton, “Life at Edge of Chaos”
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Compression-based Techniques

e Idea: lossless compression (e.g., Lempel-Ziv)
approximates program-size complexity of a string

— replaces low entropy string by high entropy

e Compare size of compressed and uncompressed
histories
v comp < uncomp = classes I or II
v comp = uncomp = classes III or IV

e Hector Zenil, “Compression-Based Investigation of the Dynamical
Properties of Cellular Automata and Other Systems,” Complexity, 19
(2010).
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Difference Patterns

e Sensitivity to initial conditions 1s characteristic of
chaotic systems

e Difference patterns show the difference between
evolutions from slightly different initial states

e Difference pattern spreading rate y:

— Little spread for small A
— Jumps at A,
— Roughly constant rate for large A -]

— Complex behavior associated

' = N o
D . s> @
T L L] L

with intermediate values

1/26/20
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Demonstration of
1D Totalistic CA
Difference Patterns

Run CA 1D General Totalistic Dif

1/26/20 83


http://../NetLogo%2520Simulations/CA%25201D%2520General%2520Totalistic%2520Dif.nlogo

Woliram Classes in Terms of
Compressibility and Sensitivity

e (Class1 e (Class III
— Highly compressible — Minimally compressible
— Insensitive to initial — Sensitive to initial
conditions conditions
e (ClassII e ClassIV
— Highly compressible — Minimally compressible
— Insensitive to initial — Sensitive to initial
conditions conditions

1/26/20 84



MEAN FIELD TECHNIQUES

1/26/20
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Mean Field Approximations

e Assume states are uncorrelated

* Let g = density of quiescent states and p =1 — q
be density of non-quiescent states

* Density of quiescent at next step 1s
g =q"+1-q"H)1-2)
e Stationary value of g given by:
=" 0igh o e g (e )
e Can solve easily for A in terms of ¢ (but not vice
versa):
1—q
S0P 28

1/26/20 86



Mean Field Estimates of
Non-quiescence

e Estimatedp =1 — g as
function of A

SR\ K. 70
| (r=1,2,3,4 for 1D)
Y / | * Note complete quiescence

below a critical A value

e With larger neighborhoods
expect non-quiescence

1/26/20 87



Mean Field Entropy
Approximation

* Recall H = )}, py lg v
e Probability of quiescent state py = q

e Assumed equal probability on non-quiescent
states: P, = E (for k> 0)

e Estimated average cell entropy:

e S 1)1_q1 il
= oty S = T T
. 1=
=—lalea+ A -q@)lg—
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MF Estimate of Entropy vs. A

.,;L?Y//
e Estimated entropy for e Estimated entropy for
N=3,5,7,9 (right to left) K=2,4,8(N=)5)
e K=4 * Note that with strong

quiescence 1 < (K — 1)/K

1/26/20 89



Empirical Entropy vs. A

2D CAs, 64 X 64
K=28
N =5 (von Neumann nbd)

For each A, 100 rule tables were
constructed at random (rotation
Invariant)

Each CA was run for 500 time
steps before measuring entropy

Entropy measured over 1000
Steps _5 Flli_llllIl|l|LIIII]IJI[III]Il]lilllllllllllll'l]ll

WOOterS&Langton (1990) -0 .1 2 3 4 f 6 7 8 9 1
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Mean Field Estimate of Spreading Rate

Max possible rate 1S Yypax = 27

For binary CA, probability two blocks map to same state:

p =12+ (1-2)?

Probability they map to different:

1—p=2A(1-21)

p

y=2(r-12)

=

Y
c

1/26/20

Can show that average spread rate is:

g2t =2 Al

i ®5%,

25 %72

\

A(1—2)

Set y = 0 and determine when becomes positive:

I

2
r+1

91

Li, Packard & Langton (1990)



MF Estimates of A"

MF estimated entropy for
N=3,5,7,9(K=4)

1/26/20

Critical lambda from MF
estimated spread rate (K = 2)

ForNe="3nrg= sl 8 =R 05

ForiNa= 5=t SR (114
For N = 7,7r = 3,1 = 0.146
For N =9,7r = 4,1 = 0.113
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REVERSIBLE CELLULAR
AUTOMATA

1/26/20
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Reversible CAs (RCAs)

Most CAs are irreversible

— By approaching an attractor they lose information about the initial
state

— They mix information from remote sites

The fundamental laws of nature are time-reversible
— Newtonian mechanics

— Quantum mechanics

* Reversible computation 1s required by:
— Ultralow power computation (below Landauer limit)

— Quantum computation

* Reversible CAs obey conservation laws

1/26/20 94



Some Definitions and Results

Global state vs. local (or neighborhood) state/configuration
Global transition function F vs. local transition function f (or rule)
A CA is injective if F 1s 1-1

— Every global state has exactly one predecessor

A CA is reversible (or invertible) if there 1s a CA with the global
function F~1

Thm: A CA is reversible iff it is injective

If a reversible CA has the same rule as its inverse, then we call it a
reversible rule

— The rule is time-reversal invariant like the laws of physics

Thm: Reversibility of 1D CAs is decidable
Thm: Reversibility for 2 or higher dimensional CAs is undecidable

It 1s hard to find RCAs, but we can make them

1/26/20



Second-order RCAs

Idea: Let the neighborhood determine a reversible change
from the preceding cell state:

si(t+1) = f (S () © syt — 1)
where s; is the state of cell i
and Sp;) 1s the state of the nbd of cell

and © 1s mod K subtraction

Note time-reversal invariance:
sit—1) = £ (S®) O syt + 1)
First-order CAs determine new state from previous state

Second-order CAs determine new state from previous two
states
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Demonstration of
Second-order RCA

Run CA 1D Reversible H

I


http://../NetLogo%2520Simulations/CA%25201D%2520Reversible%2520H.nlogo

Generalization of 2M-order RCA

The formula s;(t + 1) = f (S [i] (t)) O s;(t — 1) uses

f (S [i] (t)) to select a rotation of the state space
[0 T ]

e A rotation 1s a special case of a permutation

e Idea: Since permutations are invertible, use f (S [i] (t)) to
choose a permutation on the state space.

 The inverse rule applies the inverse permutation
-1
7 (Su®),
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Reducing 2"d-order to 1%-order

e A second order RCA can be reduced to a first
order RCA

e Just expand the state space from K to K* to
include a record of the previous state:

s;(t+1)=[s;(t+1),s/(t+1)]
= [s;(t +1),s;{(t)]
e First-order update equation:

sit+1) = [f(Si®) © s’ (®),s{(D)]

e Toreverse RCA, exchange components
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Partitioned CA (PCA)

e Each cell divided into several compartments
e Extra compartments save info needed for reversibility

e 1D case: next state determined by center part and nearest
parts of neighbors:

[ll,cl,,rl] — f(T', c, l) r c [ —p || 1

e Global function is injective iff local function is injective

e Can be simulated by ordinary CA on extended state space

r+1
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2-dimensional PCA
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Simulation of CAs by RCAs

e It’s easy to construct RCAs

 Every RCA can be simulated by an ordinary
CA (on bigger state space)

 Any d dimensional CA can be simulated 1n
real time by a d+1 dimensional RCA
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Example: Stimulation of 1D CA by 2D PCA

@ |} Y| a3 | a3 | ad|af |4 |af |af |ad |}

=1 lalala ] a
2 2 2

* Extra dimension §=d t=3
holds history 2@z |a)aa|eal|aa(z|  |aale|e)a(a|a]a]a|a]ala
* One row simulates EENZERNCERNYCER @t N a2\ @ a2\ (a2 43
CA and pushes
nbd state down
* History rows keep N N N R ‘
shifting it down L LU L L

1/26/20 103



Reversible Universal Computation

* Any TM can be simulated by a CA
— In particular, by a 1D CA

 Any CA can be simulated by an RCA

— In particular, a 1D CA can be simulated in real-time by
a 2D RCA

e Therefore, any TM can be simulated by a 2D RCA

e Therefore, RCAs are capable of universal
computation
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Example of 2D RCA Capable of
Universal Computation

e Two-state block CA

— 1-1 rules apply in
overlapping blocks

e Rotation symmetry
assumed

e (Can simulate:

— reversible logic gates

— billiard ball model

* For more, take COSC 494/594
Unconventional Computation

1/26/20

_________________ Margolus
neighborhood
R EN_ EN
EE " HE
N EE_ EE
_ | n
H_ = E_ (=
H N B B
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Suitable Media for Computation

* How can we identify/synthesize novel
computational media?

— especially nanostructured materials for
massively parallel computation

e Seek materials/systems exhibiting Class IV
behavior

— may be identifiable via entropy, mut. info., etc.

e Find physical properties (such as A) that can
be controlled to put into Class IV
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Some of the Work 1n this Area

* Woliram: A New Kind of Science

— www.wolframscience.com/nksonline/toc.html

e Langton: Computation/life at the edge of
chaos

e Crutchfield: Computational mechanics
e Mitchell: Evolving CAs

e and many others...
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Some Other Simple Computational
Systems Exhibiting the Same Behavioral
Classes

e CAs (1D, 2D, 3D, <
totalistic, etc.)

 Mobile Automata
 Turing Machines

e Substitution Systems
e Tag Systems

e Cyclic Tag Systems

1/26/20

Symbolic Systems
(combinatory logic,
lambda calculus)

Continuous CAs
(coupled map lattices)

PDEs

Probabilistic CAs
Multiway Systems
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Universality

e A system 1s computationally universal it 1t
can compute anything a Turing machine (or
digital computer) can compute

e The Game of Life 1s universal

e Several 1D CAs have been proved to be
universal

e Are all complex (Class IV) systems
universal?

e Is universality rare or common?
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Rule 110: A Universal 1D CA

o = V=3
e New state = —(pAgAr) A(gVr)
where p, g, r are neighborhood states

* Proved by Wolfram

S B | BT BT (e ] [ ]
0O O HE EH ©H
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Fundamental Universality

Classes of Dynamical Behavior

1/26/20

% ﬂ)aCﬁ
Classes I, I1 Class IV Class III
A S S o o
“solid” “phase transition” “fluid”
halt halting problem don’t halt
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Wolfram’s Principle ot
Computational Equivalence

e “a fundamental unity exists across a vast range of
processes 1n nature and elsewhere: despite all their
detailed differences every process can be viewed
as corresponding to a computation that is

ultimately equivalent in 1ts sophistication” (NKS
719)

e Conjecture: “among all possible systems with
behavior that is not obviously simple an
overwhelming fraction are universal” (NKS 721)
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Computational Irreducibility

e “systems one uses to make predictions cannot be
expected to do computations that are any more
sophisticated than the computations that occur in
all sorts of systems whose behavior we might try
to predict” (NKS 741)

e “even if 1n principle one has all the information
one needs to work out how some particular system
will behave, it can still take an irreducible amount
of computational work to do this” (NKS 739)

e That 1s: for Class IV systems, you can’t (in
general) do better than simulation.
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What do CAs have to do with
bio-1nspired computation?

e (Cellular automata were motivated by biological cells and
reproduction

e Living systems display complex, organized behavior

* Yet we have seen that simple, abstract systems such as
CAs display similar complexity

e Thus some of this complex behavior is not unique to living
things and can appear in non-living systems as well

e CAs help us to see the essence of complex, organized
behavior, so we are better able to use it in our artificial
systems
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