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The Termes Project

• Wyss Institute for Biologically Inspired 
Engineering, Harvard

• Introduction
• Algorithmic Assembly
• The Robot
• Final Video (2014)
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videos/Termes/1%20Termes%20YouTube-0.flv
videos/Termes/2%20TERMES_Project_Algorithmic_Self-Assembly_-_YouTube.flv
videos/Termes/3%20Termes%20YouTube-1.flv
videos/Termes/4%20TERMES%20227060064.mp4


Nest Building by Termites
(Natural and Artificial)
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Mound Building
by Macrotermes Termites
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Structure of Mound
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Construction 
of Mound

(1) First chamber made 
by royal couple

(2, 3) Intermediate 
stages of 
development

(4) Fully developed 
nest
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Termite Nests
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Basic Mechanism of 
Construction
(Stigmergy)

• Worker picks up soil granule
• Mixes saliva to make cement
• Cement contains pheromone
• Other workers attracted by 

pheromone to bring more 
granules

• There are also trail and queen 
pheromones
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Construction of Royal Chamber
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Construction of Arch (1)
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Construction of Arch (2)
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Construction of Arch (3)
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Basic Principles

• Continuous (quantitative) stigmergy
• Positive feedback:

– via pheromone deposition
• Negative feedback:

– depletion of soil granules & competition 
between pillars

– pheromone decay
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Deneubourg Model

• H (r, t) = concentration of cement 
pheromone in air at location r & time t

• P (r, t) = amount of deposited cement with 
still active pheromone at r, t

• C (r, t) = density of laden termites at r, t
• F = constant flow of laden termites into 

system
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Equation for P
(Deposited Cement with Pheromone)

¶t P (rate of change of active cement) =
k1 C (rate of cement deposition by termites)
– k2 P (rate of pheromone loss to air)
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€ 
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Equation for H
(Concentration of Pheromone)

¶t H (rate of change of concentration) =
k2 P (pheromone from deposited material)
– k4 H (pheromone decay)
+ DH Ñ2H (pheromone diffusion)
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Equation for C
(Density of Laden Termites)

¶tC (rate of change of concentration) =
F (flux of laden termites)
– k1 C (unloading of termites)
+ DCÑ2C (random walk)
– gÑ×(CÑH)  (chemotaxis: response to 

pheromone gradient)
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Explanation
of 

Divergence

• velocity field = V(x,y)
= iVx(x,y) + jVy(x,y)

• C(x,y) = density
• outflow rate =
Dx(CVx) Dy + Dy(CVy) Dx

• outflow rate / unit area
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Explanation of Chemotaxis Term
• The termite flow into a region is the negative

divergence of the flux through it
– Ñ × J =  – (¶Jx / ¶x + ¶Jy / ¶y)

• The flux velocity is proportional to the pheromone 
gradient
J µ ÑH

• The flux density is proportional to the number of 
moving termites
J µ C

• Hence, – gÑ×J = – gÑ×(CÑH)

4/20/20 19



Simulation (T = 0)
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Simulation (T = 100)
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Simulation (T = 1000)
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Conditions for Self-Organized 
Pillars

• Will not produce regularly spaced pillars if:
– density of termites is too low
– rate of deposition is too low

• A homogeneous stable state results
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NetLogo Simulation of 
Deneubourg Model

Run Pillars3D.nlogo
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file:////Users/mclennan/Documents/CS420-527%20BIC/NetLogo%203D%20Simulations/Pillars3D.nlogo


Interaction of Three Pheromones
• Queen pheromone governs size and shape 

of queen chamber (template)
• Cement pheromone governs construction 

and spacing of pillars & arches (stigmergy)
• Trail pheromone:

– attracts workers to construction sites 
(stigmergy)

– encourages soil pickup (stigmergy)
– governs sizes of galleries (template)
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Wasp Nest 
Building

and
Discrete 

Stigmergy
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Structure of 
Some Wasp 

Nests
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Adaptive Function of Nests

Figs. from Self-Org. Biol. Sys,4/20/20 28



How Do They Do It?
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Lattice Swarms

(developed by Theraulaz & Bonabeau)
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Discrete vs. Continuous 
Stigmergy

• Recall: stigmergy is the coordination of 
activities through the environment

• Continuous or quantitative stigmergy
– quantitatively different stimuli trigger 

quantitatively different behaviors
• Discrete or qualitative stigmergy

– stimuli are classified into distinct classes, which 
trigger distinct behaviors
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Discrete Stigmergy 
in Comb 

Construction

• Initially all sites are 
equivalent

• After addition of cell, 
qualitatively different 
sites created
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Numbers and Kinds
of Building Sites
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Lattice Swarm Model
• Random movement by wasps in a 3D lattice

– cubic or hexagonal
• Wasps obey a 3D CA-like rule set
• Depending on configuration, wasp deposits 

one of several types of “bricks”
• Once deposited, it cannot be removed
• May be deterministic or probabilistic
• Start with a single brick
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Cubic Neighborhood
• Deposited brick depends 

on states of 26 surrounding 
cells

• Configuration of sur-
rounding cells may be 
represented by matrices:

4/20/20 35€ 

0 0 0
1 0 0
0 0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

×

0 0 0
1 • 0
0 0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

×

0 0 0
1 0 0
0 0 0

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 

Fig. from Solé & Goodwin



Hexagonal Neighborhood
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Example Construction
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Another Example
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A Simple Pair of Rules
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Result from Deterministic Rules
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Result from Probabilistic Rules
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Example Rules for a More 
Complex Architecture

The following stimulus configurations cause the 
agent to deposit a type-1 brick:
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Second 
Group of 

Rules

For these 
configurations, 
deposit a type-2 
brick
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Result
• 20´20´20 lattice
• 10 wasps
• After 20 000 

simulation steps
• Axis and plateaus
• Resembles nest of 

Parachartergus
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Architectures Generated from 
Other Rule Sets
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More Cubic Examples
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Cubic Examples (1)
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Cubic Examples (2)
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Cubic Examples (3)
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Cubic Examples (4)
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Cubic Examples (5)
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An Interesting 
Example

• Includes
– central axis
– external envelope
– long-range helical ramp

• Similar to Apicotermes
termite nest
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Similar Results
with Hexagonal Lattice

• 20´20´20 lattice
• 10 wasps
• All resemble nests of 

wasp species
• (d) is (c) with  

envelope cut away
• (e) has envelope cut 

away
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More Hexagonal Examples
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Effects of Randomness
(Coordinated Algorithm)

• Specifically different (i.e., different in details)
• Generically the same (qualitatively identical)
• Sometimes results are fully constrained
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Effects of Randomness
(Non-coordinated Algorithm)
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Non-coordinated Algorithms

• Stimulating configurations are not ordered 
in time and space

• Many of them overlap
• Architecture grows without any coherence
• May be convergent, but are still 

unstructured
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Coordinated Algorithm
• For cooperation (vs. mutual interference) to 

emerge, stimulating configurations need to be 
organized in time and space

• Non-conflicting rules
– can’t prescribe two different actions for the same 

configuration
• Stimulating configurations for different building 

stages cannot overlap
• At each stage, “handshakes” and “interlocks” are 

required to prevent conflicts in parallel assembly
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More Formally…
• Let C = {c1, c2, …, cn} be the set of local 

stimulating configurations
• Let (S1, S2, …, Sm) be a sequence of 

assembly stages
• These stages partition C into mutually 

disjoint subsets C(Sp)
• Completion of Sp signaled by appearance of 

a configuration in C(Sp+1)
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Example

4/20/20 60Fig. from Camazine &al., Self-Org. Biol. Sys.



Example
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Modular Structure

• Recurrent states 
induce cycles in group 
behavior

• These cycles induce 
modular structure

• Each module is built 
during a cycle

• Modules are 
qualitatively similar
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Possible Termination 
Mechanisms

• Qualitative
– the assembly process leads to a configuration that is not 

stimulating
• Quantitative

– a separate rule inhibiting building when nest a certain 
size relative to population

– “empty cells rule”: make new cells only when no 
empties available

– growing nest may inhibit positive feedback 
mechanisms
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Observations

• Non-coordinated algorithms tend to lead to 
uninteresting structures
– random or space-filling shapes

• Similar structured architectures tend to be 
generated by similar coordinated algorithms

• Algorithms that generate structured 
architectures seem to be confined to a small 
region of rule-space
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Analysis
• Define matrix M:

§ 12 columns for 12 sample structured architectures
§ 211 rows for stimulating configurations
§ Mij = 1 if architecture j requires configuration i
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Factorial Correspondence Analysis
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Conclusions
• Simple rules that exploit discrete 

(qualitative) stigmergy can be used by 
autonomous agents to assemble complex, 
3D structures

• The rules must be non-conflicting and 
coordinated according to stage of assembly

• The rules corresponding to interesting 
structures occupy a comparatively small 
region in rule-space
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