Part C

Nest Building

The Termes Project

- Wyss Institute for Biologically Inspired Engineering, Harvard
- Introduction
- Algorithmic Assembly
- The Robot
- Final Video (2014)

Nest Building by Termites (Natural and Artificial)

Mound Building by Macrotermes Termites

Structure of Mound

Construction of Mound

- (1) First chamber made by royal couple
- (2, 3) Intermediate stages of development
- (4) Fully developed nest

Termite Nests

Basic Mechanism of Construction (Stigmergy)

- Worker picks up soil granule
- Mixes saliva to make cement
- Cement contains pheromone
- Other workers attracted by pheromone to bring more granules
- There are also trail and queen pheromones

Construction of Royal Chamber

Construction of Arch (1)

Construction of Arch (2)

Construction of Arch (3)

Basic Principles

- Continuous (quantitative) stigmergy
- Positive feedback:
 - via pheromone deposition
- Negative feedback:
 - depletion of soil granules & competition between pillars
 - pheromone decay

Deneubourg Model

- H(r, t) = concentration of cement pheromone in air at location r & time t
- P(r, t) = amount of deposited cement with still active pheromone at r, t
- C(r, t) = density of laden termites at r, t
- Φ = constant flow of laden termites into system

Equation for *P*(Deposited Cement with Pheromone)

 $\partial_t P$ (rate of change of active cement) = $k_1 C$ (rate of cement deposition by termites) $-k_2 P$ (rate of pheromone loss to air)

$$\partial_t P = k_1 C - k_2 P$$

Equation for *H* (Concentration of Pheromone)

 $\partial_t H$ (rate of change of concentration) = $k_2 P$ (pheromone from deposited material)

- $-k_4H$ (pheromone decay)
- + $D_H \nabla^2 H$ (pheromone diffusion)

$$\partial_t H = k_2 P - k_4 H + D_H \nabla^2 H$$

Equation for *C* (Density of Laden Termites)

 $\partial_t C$ (rate of change of concentration) =

Φ (flux of laden termites)

- $-k_1 C$ (unloading of termites)
- + $D_C \nabla^2 C$ (random walk)
- $-\gamma\nabla\cdot(C\nabla H)$ (chemotaxis: response to pheromone gradient)

$$\partial_t C = \Phi - k_1 C + D_C \nabla^2 C - \gamma \nabla \cdot (C \nabla H)$$

Explanation of Divergence

- velocity field = $\mathbf{V}(x,y)$ = $\mathbf{i}V_x(x,y) + \mathbf{j}V_y(x,y)$
- C(x,y) = density
- outflow rate = $\Delta_x(CV_x) \Delta y + \Delta_y(CV_y) \Delta x$
- outflow rate / unit area

$$= \frac{\Delta_x(CV_x)}{\Delta x} + \frac{\Delta_y(CV_y)}{\Delta y}$$

$$\Rightarrow \frac{\partial(CV_x)}{\partial x} + \frac{\partial(CV_y)}{\partial y} = \nabla \cdot CV$$

Explanation of Chemotaxis Term

• The termite flow *into* a region is the *negative* divergence of the flux through it

$$-\nabla \cdot \mathbf{J} = -\left(\partial J_x / \partial x + \partial J_y / \partial y\right)$$

• The flux velocity is proportional to the pheromone gradient

$$\mathbf{J} \propto \nabla H$$

 The flux density is proportional to the number of moving termites

$$J \propto C$$

• Hence, $-\gamma \nabla \cdot \mathbf{J} = -\gamma \nabla \cdot (C \nabla H)$

Simulation (T = 0)

fig. from Solé & Goodwin

Simulation (T = 100)

fig. from Solé & Goodwin

Simulation (T = 1000)

fig. from Solé & Goodwin

Conditions for Self-Organized Pillars

- Will not produce regularly spaced pillars if:
 - density of termites is too low
 - rate of deposition is too low
- A homogeneous stable state results

$$C_0 = \frac{\Phi}{k_1}, \qquad H_0 = \frac{\Phi}{k_4}, \qquad P_0 = \frac{\Phi}{k_2}$$

NetLogo Simulation of Deneubourg Model

Run Pillars3D.nlogo

Interaction of Three Pheromones

- Queen pheromone governs size and shape of queen chamber (template)
- Cement pheromone governs construction and spacing of pillars & arches (stigmergy)
- Trail pheromone:
 - attracts workers to construction sites (stigmergy)
 - encourages soil pickup (stigmergy)
 - governs sizes of galleries (template)

Wasp Nest Building and Discrete Stigmergy

Structure of Some Wasp Nests

Fig. from Self-Org. Biol. Sys.

Adaptive Function of Nests

How Do They Do It?

Lattice Swarms

(developed by Theraulaz & Bonabeau)

Discrete vs. Continuous Stigmergy

- Recall: *stigmergy* is the coordination of activities through the environment
- Continuous or quantitative stigmergy
 - quantitatively different stimuli trigger quantitatively different behaviors
- Discrete or qualitative stigmergy
 - stimuli are classified into distinct classes, which trigger distinct behaviors

Discrete Stigmergy in Comb Construction

- Initially all sites are equivalent
- After addition of cell, qualitatively different sites created

Numbers and Kinds of Building Sites

Fig. from Self-Org. Biol. Sys.

Lattice Swarm Model

- Random movement by wasps in a 3D lattice
 - cubic or hexagonal
- Wasps obey a 3D CA-like rule set
- Depending on configuration, wasp deposits one of several types of "bricks"
- Once deposited, it cannot be removed
- May be deterministic or probabilistic
- Start with a single brick

Cubic Neighborhood

- Deposited brick depends on states of 26 surrounding cells
- Configuration of surrounding cells may be represented by matrices:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hexagonal Neighborhood

Example Construction

Another Example

A Simple Pair of Rules

Fig. from Self-Org. in Biol. Sys.

Result from Deterministic Rules

Result from Probabilistic Rules

Fig. from Self-Org. in Biol. Sys.

Example Rules for a More Complex Architecture

The following stimulus configurations cause the agent to deposit a type-1 brick:

$$\begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
0 & \bullet & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$$(1.2) \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
1 & \bullet & 0 \\
0 & 0 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

$(2.1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(2.2) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 0 \\ 0 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & \bullet & 0 \\ 1 & 2 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 2.4 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \times \begin{bmatrix} 2 & 0 & 0 \\ 2 & \bullet & 0 \\ 2 & \bullet & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(2.5) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 2 & \bullet & 0 \\ 2 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \times \begin{bmatrix} 2 & 2 & 0 \\ 2 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{pmatrix} 2.7 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $\begin{pmatrix} 2.8 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $(2.9) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 0 \\ 0 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$(2.10) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & 0 \\ 1 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.11)^* \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 0 \\ 2 & * & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.12)^* \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 2 & 2 \\ 0 & * & 2 \\ 0 & 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.13) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 2 \\ 2 & * & 2 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.14) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 0 \\ 2 & * & 2 \\ 2 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.15) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 2 & * & 2 \\ 2 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.16) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & * & 2 \\ 0 & * & 2 \\ 0 & * & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.17) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 0 \\ 0 & * & 2 \\ 0 & * & 2 \\ 0 & * & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$(2.18)^* \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 0 \\ 2 & * & 0 \\ 2 & * & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Second Group of Rules

For these configurations, deposit a type-2 brick

Result

- $20 \times 20 \times 20$ lattice
- 10 wasps
- After 20 000 simulation steps
- Axis and plateaus
- Resembles nest of Parachartergus

Architectures Generated from Other Rule Sets

More Cubic Examples

Fig. from Bonabeau & al., Swarm Intell.

Cubic Examples (1)

Cubic Examples (2)

Cubic Examples (3)

Cubic Examples (4)

Cubic Examples (5)

An Interesting Example

- Includes
 - central axis
 - external envelope
 - long-range helical ramp
- Similar to *Apicotermes* termite nest

Similar Results with Hexagonal Lattice

- $20 \times 20 \times 20$ lattice
- 10 wasps
- All resemble nests of wasp species
- (d) is (c) with envelope cut away
- (e) has envelope cut away

More Hexagonal Examples

Effects of Randomness (Coordinated Algorithm)

- Specifically different (i.e., different in details)
- Generically the same (qualitatively identical)
- Sometimes results are <u>fully constrained</u>

Effects of Randomness (Non-coordinated Algorithm)

Non-coordinated Algorithms

- Stimulating configurations are not ordered in time and space
- Many of them overlap
- Architecture grows without any coherence
- May be convergent, but are still unstructured

Coordinated Algorithm

- For cooperation (vs. mutual interference) to emerge, stimulating configurations need to be organized in time and space
- Non-conflicting rules
 - can't prescribe two different actions for the same configuration
- Stimulating configurations for different building stages cannot overlap
- At each stage, "handshakes" and "interlocks" are required to prevent conflicts in parallel assembly

More Formally...

- Let $C = \{c_1, c_2, ..., c_n\}$ be the set of local stimulating configurations
- Let $(S_1, S_2, ..., S_m)$ be a sequence of assembly stages
- These stages partition C into mutually disjoint subsets $C(S_p)$
- Completion of S_p signaled by appearance of a configuration in $C(S_{p+1})$

4/20/20

Fig. from Camazine &al., Self-Org. Biol. Sys.

Modular Structure

- Recurrent states induce cycles in group behavior
- These cycles induce modular structure
- Each module is built during a cycle
- Modules are qualitatively similar

Possible Termination Mechanisms

Qualitative

 the assembly process leads to a configuration that is not stimulating

Quantitative

- a separate rule inhibiting building when nest a certain size relative to population
- "empty cells rule": make new cells only when no empties available
- growing nest may inhibit positive feedback mechanisms

Observations

- Non-coordinated algorithms tend to lead to uninteresting structures
 - random or space-filling shapes
- Similar structured architectures tend to be generated by similar coordinated algorithms
- Algorithms that generate structured architectures seem to be confined to a small region of rule-space

Analysis

- Define matrix M:
 - 12 columns for 12 sample structured architectures
 - 211 rows for stimulating configurations
 - $M_{ij} = 1$ if architecture j requires configuration i

Fig. from Bonabeau & al., Swarm Intell.

Factorial Correspondence Analysis

Conclusions

- Simple rules that exploit discrete
 (qualitative) stigmergy can be used by
 autonomous agents to assemble complex,
 3D structures
- The rules must be non-conflicting and coordinated according to stage of assembly
- The rules corresponding to interesting structures occupy a comparatively small region in rule-space

Part 6

Additional Bibliography

- 1. Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. *Self-Organization in Biological Systems*. Princeton, 2001, chs. 11, 13, 18, 19.
- 2. Bonabeau, E., Dorigo, M., & Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999, chs. 2, 6.
- 3. Solé, R., & Goodwin, B. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000, ch. 6.
- 4. Resnick, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press, 1994, pp. 59-68, 75-81.
- 5. Kennedy, J., & Eberhart, R. "Particle Swarm Optimization," *Proc. IEEE Int'l. Conf. Neural Networks* (Perth, Australia), 1995. http://www.engr.iupui.edu/~shi/pso.html.

