COSC 494/594 Unconventional Computation

Introduction

Fall 2012

Unconventional Computation

Course Information

- Instructor: Bruce MacLennan
- Course website: web.eecs.utk.edu/~mclennan/Classes/494-UC or 594-UC
- Email: maclennan@eecs.utk.edu
- Prereqs: linear algebra (basic CS, physics)
- · Grading:
 - Homework (every week or two)
 - Project or two
 - Term paper (on some kind of unconventional computation)
 - Presentation (for 594)

Fall 2012

Unconventional Computation

Course Outline

- Introduction
- II. Physics of computation
- III. Quantum computation
- IV. Molecular computation
- V. Analog computation?
- VI. Grad presentations on other unconventional computing paradigms

Fall 2012

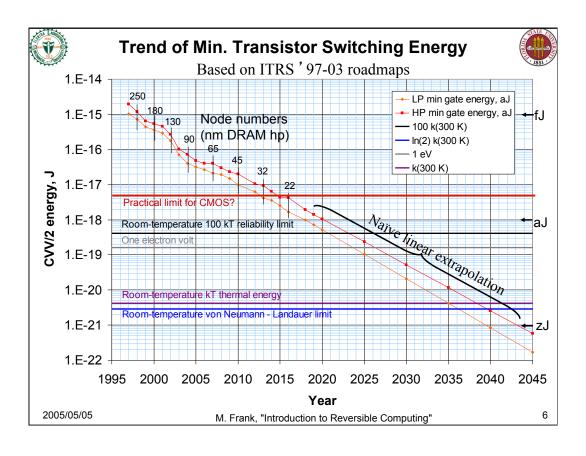
Unconventional Computation

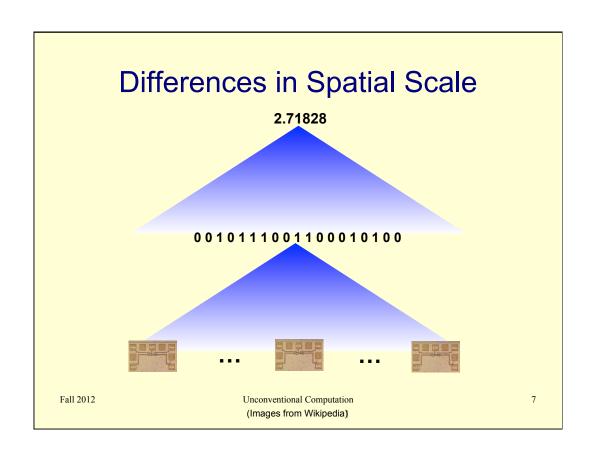
3

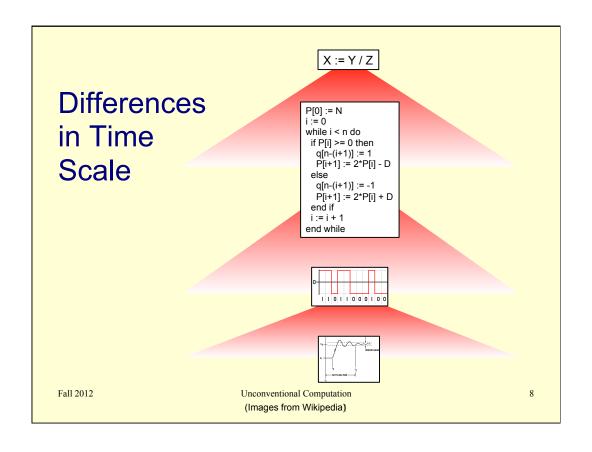
Unconventional Computation

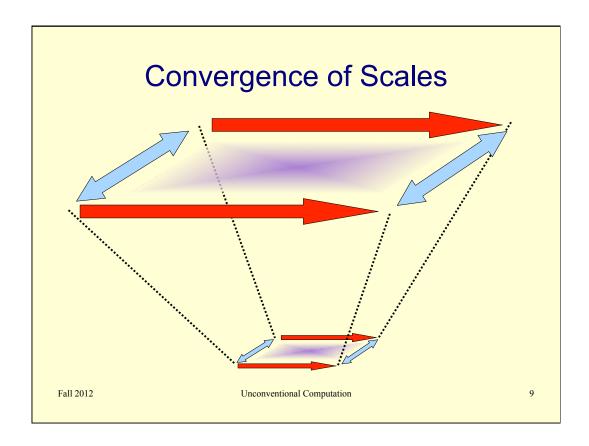
- Unconventional (or non-standard) computation refers to the use of non-traditional technologies and computing paradigms
 - Why would you want to do this?
- Hypercomputation or super-Turing computation refers to computation "beyond the Turing limit"
 - Is this possible?

Fall 2012


Unconventional Computation


5


Post-Moore's Law Computation


- The end of Moore's Law is in sight!
- Physical limits to:
 - density of binary logic devices
 - speed of operation
- Requires a new approach to computation
- Significant challenges
- Will broaden & deepen concept of computation in natural & artificial systems

Fall 2012 Unconventional Computation

Implications of Convergence

- Computation on scale of physical processes
- Fewer levels between computation & realization
- Less time for implementation of operations
- Computation will be more like underlying physical processes
- Post-Moore's Law computing ⇒ greater assimilation of computation to physics

Fall 2012

Unconventional Computation

Computation is Physical

"Computation is physical; it is necessarily embodied in a device whose behaviour is guided by the laws of physics and cannot be completely captured by a closed mathematical model. This fact of embodiment is becoming ever more apparent as we push the bounds of those physical laws."

— Susan Stepney (2004)

Fall 2012

Unconventional Computation

11

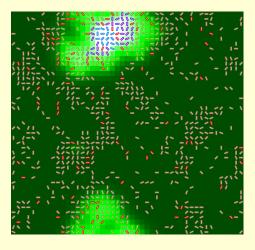
Cartesian Duality in CS

- Programs as idealized mathematical objects
- Software treated independently of hardware
- Focus on formal rather than material
- Post-Moore's Law computing:
 - less idealized
 - more dependent on physical realization
- More difficult
- But also presents opportunities...

Fall 2012

Unconventional Computation

Strengths of "Embodied Computation"

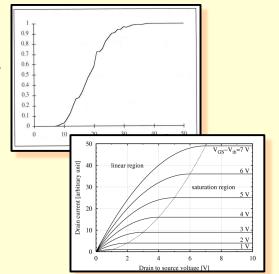

- Information often implicit in:
 - its physical realization
 - its physical environment
- Many computations performed "for free" by physical substrate
- Representation & information processing emerge as regularities in dynamics of physical system

Fall 2012

Unconventional Computation

13

Example: Diffusion

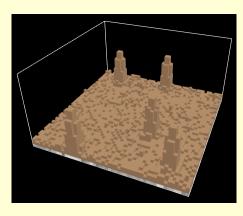

- Occurs naturally in many fluids
- Can be used for many computational tasks
 - broadcasting information
 - massively parallel search for optimization, constraint satisfaction etc.
- Expensive with conventional computation
- Free in many physical systems

Fall 2012

Unconventional Computation

Example: Saturation

- Sigmoids in ANNs & universal approx.
- Many physical systems have sigmoidal behavior
 - Growth process saturates
 - Resources become saturated or depleted
- Embodied computation uses free sigmoidal behavior

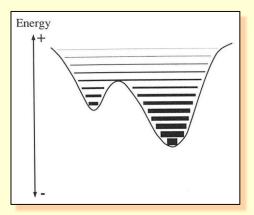


Fall 2012

Unconventional Computation
(Images from Bar-Yam & Wikipedia)

15

Example: Negative Feedback


- Positive feedback for growth & extension
- Negative feedback for:
 - stabilization
 - delimitation
 - separation
 - creation of structure
- Free from
 - evaporation
 - dispersion
 - degradation

Fall 2012

Unconventional Computation

- Many algorithms use randomness
 - escape from local optima
 - symmetry breaking
 - deadlock avoidance
 - exploration
- For free from:
 - noise
 - uncertainty
 - Imprecision
- "Free variability"

Example: Randomness

Fall 2012

Unconventional Computation (Image from Anderson)

17

"Respect the Medium"

- Conventional computer technology "tortures the medium" to implement computation
- Embodied computation "respects the medium"
- Goal of embodied computation:

Exploit the physics, don't circumvent it

Fall 2012

Unconventional Computation

But is it Computing?

Fall 2012

Unconventional Computation

19

Some Non-Turing Characteristics of Embodied Computation

- · Operates in real time and real space
 - with real matter and real energy
 - and hence non-ideal aspects of physical realization
- Often does not terminate
- Often has no distinct inputs or outputs
- Often purpose is not to get an answer from an input
- Often purpose is not to control fixed agent
- · Different notions of equivalence and universality

Fall 2012

Unconventional Computation

Is EC a Species of Computing?

- The Turing Machine provides a precise definition of computation
- Embodied computation may seem imprecise
- & difficult to discriminate from other physical processes
- Expanding concept of computation beyond TM requires an expanded definition

Fall 2012

Unconventional Computation

21

Non-Turing Computation

Fall 2012

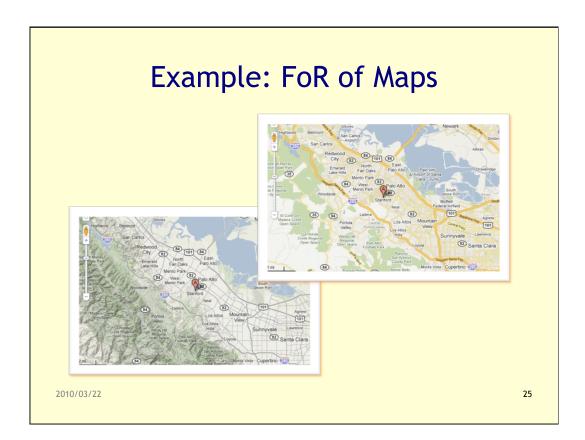
Unconventional Computation

Frames of Relevance

- CT computation is a *model* of computation
- All models have an associated frame of relevance
 - determined by model's simplifying assumptions
 - by aspects & degrees to which model is similar to modelled system
- Determine questions model is suited to answer
- Using outside FoR may reflect model & simplifying assumptions more than modelled system

Fall 2012

Unconventional Computation


23

Models & Simplifying Assumptions

- Turing computation is a model of computation
- A model is like its subject in relevant ways
- Unlike it in irrelevant ways
- A model is suited to pose & answer certain classes of questions
- Thus every model exists in a frame of relevance (FoR)
- FoR defines domain of reliable use of model

Fall 2012

Unconventional Computation

The FoR of Turing Computation

- *Historical roots*: issues of formal calculability & provability in axiomatic mathematics; hence:
 - finite number of steps & finite but unlimited resources
 - computation viewed as function evaluation
 - discreteness assumptions

Fall 2012

Unconventional Computation

Idealizing Assumptions

- Finite but unbounded resources
- Discreteness & definiteness
- Sequential time
- Computational task = evaluation of well-defined function
- Computational power defined in terms of sets of functions

Fall 2012

Unconventional Computation

27

Alternate Frames of Relevance for Expanded Notions of Computation

- Natural Computation
 - applying natural processes in computation
 - alternative realizations of formal processes
- Nanocomputation
 - direct realizations of non-Turing computations
 - unique characteristics
- Quantum & Quantum-like Computation

Fall 2012

Unconventional Computation

Natural Computation

- Natural computation = computation occurring in nature or inspired by it
- Occurs in nervous systems, DNA, microorganisms, animal groups
- Good models for robust, efficient & effective artificial systems (autonomous robots etc.)
- Different issues are relevant

Fall 2012

Unconventional Computation

29

Relevant Issues Outside TC FoR

- Real-time control
- Continuous computation
- Robustness
- Generality, flexibility & adaptability
- Non-functional computation

Fall 2012

Unconventional Computation

Relevant Issues Outside TC FoR

- Error, noise & uncertainty are unavoidable
 - must be part of model of computation
 - may be used productively
- Microscopic reversibility may occur
 - e.g., reversible chemical reactions
 - want statistical or macroscopic progress
- Computation proceeds asynchronously in continuous-time parallelism

Fall 2012

Unconventional Computation

31

Real-Time Control

- Real-time (RT) response constraints
- Asymptotic complexity is usually irrelevant
 - Input size typically constant or of limited variability
 - Computational resources are bounded
- Relevant: relation of RT response rate to RT rates of its components

Fall 2012

Unconventional Computation

Continuous Computation

- Inputs & outputs often:
 - Are continuous quantities
 - Vary continuously in real time
- Computational processes often continuous
- More or less powerful than TMs?
- Obviously can be approximated by discrete quantities varying at discrete times, but ...

Fall 2012

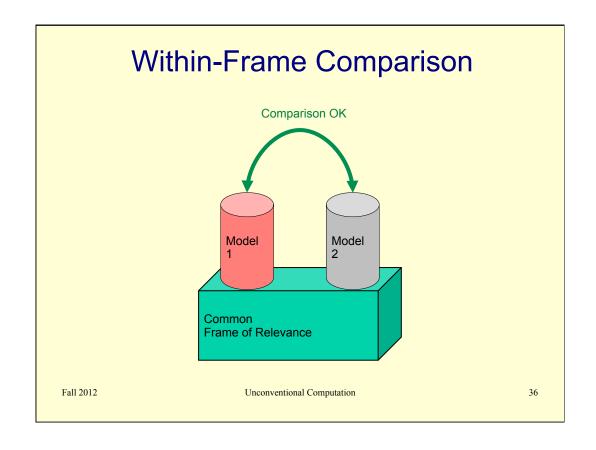
Unconventional Computation

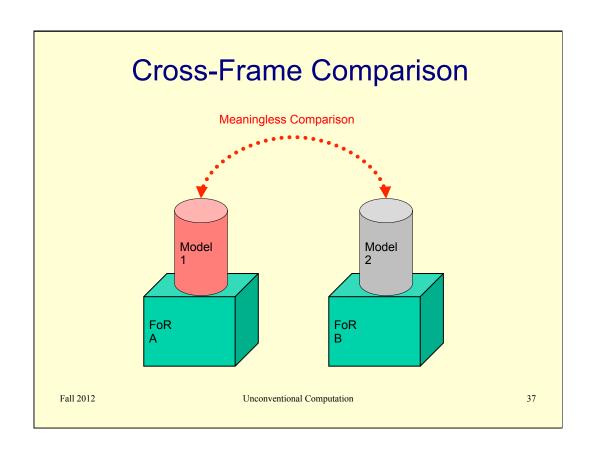
33

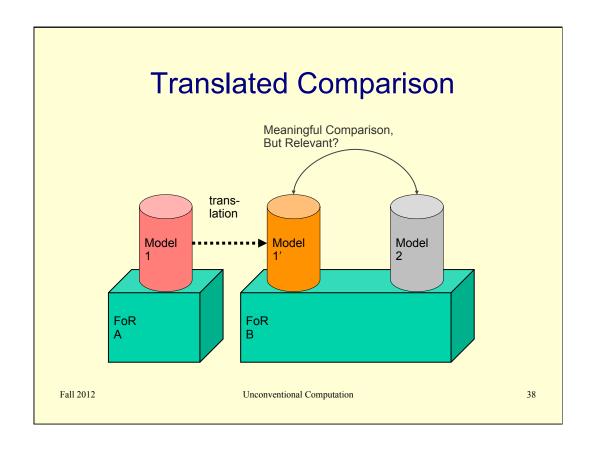
"Metaphysics" of Reals

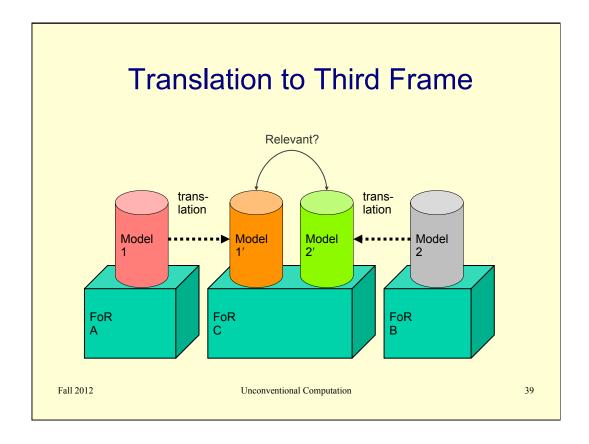
- "Metaphysical issues":
 - Turing-computable reals vs. standard reals
 - Standard reals vs. non-standard reals
- Results depend on "metaphysical issues" ⇒ outside FoR of model
- Naïve real analysis is sufficient for models of natural computation

Fall 2012


Unconventional Computation


Cross-Frame Comparisons


- Can we compare models with different FoRs?
- Yes: can translate one to other's FoR
- Typically make incompatible simplifying assumptions
- Results may depend on specifics of translation
- E.g., how are continuous quantities represented in TC?


Fall 2012

Unconventional Computation

Super-Turing vs. Non-Turing

- Notion of Super-Turing computation is relative to FoR of Turing computation
- Super-Turing computation is important, but so is *Non*-Turing computation

Fall 2012

Unconventional Computation

Some Issues in Non-Turing Computation

- What is computation in broad sense?
- What FoRs are appropriate for non-Turing computation?
- Models of non-Turing computation
- How fundamentally to incorporate error, uncertainty, imperfection, reversibility?
- How systematically to exploit new physical processes?

Fall 2012

Unconventional Computation

41

Expanding the Range of Physical Computation

- Digital VLSI becoming a vicious cycle?
- A limit to the number of bits and MIPS
- Alternative technologies are surpassed before they can be developed
- False assumption that binary logic is the only way to compute
- How to break out of the vicious cycle?

Fall 2012

Unconventional Computation

What is Computation?

- What distinguishes computing (physically realized information processing) from other physical processes?
- Computation is a mechanistic process, the purpose or function of which is the abstract manipulation (processing) of abstract objects
- Purpose is formal rather than material
- Does not exclude embodied computation, which relies more on physical processes

Fall 2012

Unconventional Computation

43

Possible Physical Realizations of Computation

- Any abstract manipulation of abstract objects is a potential computation
 - de novo applications of math models
 - applications suggested by natural computation
- But it must be physically realizable
- Any reasonably controllable, mathematically described, physical process can be used for computation

Fall 2012

Unconventional Computation

Some Requirements

- Speed, but:
 - faster is not always better
 - slower processes may have other advantages
- Feasibility of required transducers
- Accuracy, stability & controllability as required for the application
 - natural computation shows ways of achieving, even with imperfect components

Fall 2012

Unconventional Computation

45

Matching Computational & Physical Processes

- Familiarity of binary logic maintains vicious cycle
- Natural computation shows alternate modes of computation, e.g.:
 - information processing & control in brain
 - emergent self-organization in animal societies
- · Openness to usable physical processes
- Library of well-matched computational methods & physical realizations

Fall 2012

Unconventional Computation

General-Purpose Computation

- Value of general-purpose computers for all modes of computation
- "Universality" is relative to frame of relevance
- E.g., speed of emulation is essential to realtime applications (natural computation)
- Merely computing the same function may be irrelevant

Fall 2012

Unconventional Computation

47

Conclusions

- Turing model of computation exists in a frame of relevance
 - not appropriate to natural computation, nanocomputation, quantum / quantum-like computation
 - central issues of these include continuity, indeterminacy, parallelism
- Broader definition of computation is needed
- Facilitates new implementation technologies
- Improves understanding of computation in nature

Fall 2012

Unconventional Computation