
Chapter II

Physics of Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’sUnconventional Computations course. c�2012, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of August 28, 2012.

A Reversible computation

These lectures are based on Michael P. Frank, “Introduction to Reversible
Computing: Motivation, Progress, and Challenges” (CF05, May 46, 2005,
Ischia, Italy). (Quotations in this section are from this paper unless otherwise
specified.)

A.1 Problem of energy dissipation

¶1. Energy e�ciency:

R =
N

ops

t
=

N
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E
diss

⇥ E
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t
= F

E

⇥ P
diss

(II.1)

“where R = performance,
N

ops

= number of useful operations performed during a job,
t = total elapsed time to perform the job,
E

diss

= energy dissipated during the job,
F
E

= N
ops

/E
diss

= energy e�ciency,
P
diss

= E
diss

/t = average power dissipation during the job.”
The key parameter is F

E

.
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¶2. Energy e�ciency of FET: “Energy e�ciency for the lowest-level ops
has been roughly given by F

E

⇡ (1 op)/(1
2

CV 2), where C is the typical
capacitance of a node in a logic circuit, and V is the typical voltage
swing between logic levels.”
(The charge stored in a capacitor is Q = CV and the energy stored in
it is 1

2

CV 2.)

¶3. “This is because voltage-coded logic signals have an energy of E
sig

=
1

2

CV 2, and this energy gets dissipated whenever the node voltage is
changed by the usual irreversible FET-based mechanisms in modern
CMOS technology.”

¶4. Moore’s law is a result of “an exponential decline in C over this same
period [1985–2005] (in proportion to shrinking transistor lengths), to-
gether with an additional factor of ⇠ 25⇥ coming from a reduction of
the typical logic voltage V from 5V (TTL) to around 1V today.”
See Fig. II.1.

¶5. Neither the transistor lengths nor the voltage can be reduced much
more.

¶6. Thermal noise: “[A]s soon as the signal energy E
sig

= 1

2

CV 2 becomes
small in comparison with the thermal energy E

T

= k
B

T , (where k
B

is
Boltzmann’s constant and T is the temperature), digital devices can
no longer function reliably, due to problems with thermal noise.”

¶7. Room-temperature thermal energy: k
B

⇡ 8.6 ⇥ 10�5 eV/�K =
1.38⇥ 10�11 pJ/�K.
I’ll write k when it’s clear from context.
Room temperature ⇠ 300�K,
so k

B

T ⇡ 26 meV ⇡ 4.14⇥ 10�9 pJ = 4.14 zeptojoules.
This is room-temperature thermal energy.

¶8. Reliable signal processing: “For a reasonable level of reliability, the
signal energy should actually be much larger than the thermal energy,
E

sig

� E
T

(Fig. II.2). For example, a signal level of

E
sig

& 100k
B

T ⇡ 2.6 eV[= 4.14⇥ 10�7 pJ]

(at room temperature) gives a decently low error probability of around
e�100 = 3.72⇥ 10�44.”
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2005/05/05 M. Frank, "Introduction to Reversible Computing" 6 
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Figure II.1: [slide from Frank, RC 05 presentation]

Figure II.2: Depiction of 0-1-0 pulses in the presence of high thermal noise.



10 CHAPTER II. PHYSICS OF COMPUTATION

A limit of 40k
B

T ⇡ 1 eV is based on R = 1/p
err

, formula E
sig

�
k
B

T lnR, and a “decent” R = 2⇥ 1017.

¶9. Lower operating temperature?: Operating at a lower temperature
does not help much, since the e↵ective T has to reflect the environment
into which the energy is eventually dissipated.

¶10. Error-correcting codes?: ECCs don’t help, because we need to con-
sider the total energy for encoding a bit.

¶11. “It is interesting to note that the energies of the smallest logic signals
today are already only about 104k

B

T . . . , which means there is only
about a factor of 100 of further performance improvements remaining,
before we begin to lose reliability.”

¶12. “A factor of 100 means only around 10 years remain of further perfor-
mance improvements, given the historical performance doubling period
of about 1.5 years. Thus, by about 2015, the performance of conven-
tional computing will stop improving, at least at the device level . . . ”

¶13. Power wall: “About five years ago [2006], however, the top speed for
most microprocessors peaked when their clocks hit about 3 gigahertz.
The problem is not that the individual transistors themselves can’t be
pushed to run faster; they can. But doing so for the many millions
of them found on a typical microprocessor would require that chip to
dissipate impractical amounts of heat. Computer engineers call this
the power wall.”1

¶14. Current fastest supercomputer:2 The IBM Sequoia runs at 16.325
petaflops (soon the be increased to 20).
1,572,864 processors. 1.6 petabytes of RAM.
Considered very e�cient because consumes only 7.89 MW [enough for
a city of about 8000 homes].

¶15. Scaling up current technology (such as Blue Waters) to 1 exaflop would
consume 1.5 GW, more that 0.1% of US power grid.3

1
Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed 2012-08-20).

2
Computer 44, 8 (Aug. 2012), p. 21.

3
Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed 2012-08-20).
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¶16. Some recent supercomputers have had power e�ciencies as high as 2
gigaflops/W.4

This is about 500 pJ/flop, or F
E

= 2⇥ 10�3 flop/pJ.
Note that these are flops, not basic logic operations/sec.

¶17. It might be possible to get it down to 5 to 10 pJ/flop, but “the energy
to perform an arithmetic operation is trivial in comparison with the
energy needed to shu✏e the data around, from one chip to another,
from one board to another, and even from rack to rack.”5

(5 pJ ⇡ 3⇥ 107 eV.)

¶18. It’s di�cult to use more than 5–10% of a supercomputer’s capacity for
any extended period; most of the processors are idling.6

So with more that 1.5⇥106 cores, most of the time more than a million

of them are idle.

A.2 Reversible computing as solution

A.2.a Possible solution

¶1. Notice that the key quantity F
E

in Eqn. II.1 depends on the energy
dissipated as heat.

¶2. The 100k
B

T limit depends on the energy in the signal (necessary to
resist thermal fluctuation causing a bit flip).

¶3. There is nothing to say that information processing has to dissipate
energy; an arbitrarily large amount of it can be recovered for future
operations.

“Arbitrary” in the sense that there is no inherent physical lower bound
on the energy that must be dissipated.

¶4. It becomes a matter of precise energy management, moving it around
in di↵erent patterns, with as little dissipation as possible.

4https://en.wikipedia.org/wiki/Supercomputer (accessed 2012-08-20).

5
Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed 2012-08-20).

6
Spectrum (Feb. 2011) spectrum.ieee.org/computing/hardware/nextgeneration-

supercomputers/0 (accessed 2012-08-20).
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¶5. Indeed, E
sig

can be increased to improve reliability, provided we mini-
mize dissipation of energy.

¶6. This can be accomplished by making the computation logically re-

versible (i.e., each successor state has only one predecessor state).

A.2.b Reversible physics

¶1. All fundamental physical theories are Hamiltonian dynamical systems.

¶2. All such systems are time-reversible. That is, if  (t) is a solution, then
so is  (�t).

¶3. In general, physics is reversible.

¶4. Physical information cannot be lost, be we can lose track of it. This is
entropy: “unknown information residing in the physical state.”
Note how this is fundamentally a matter of information and knowledge.
What is irreversible is the information loss.

A.2.c Von Neumann-Landaur Principle

¶1. Entropy: A quick introduction/review of the entropy concept. We
will look at it in more detail soon (Sec. B.1).

¶2. Information content: The information content of a signal (message)
measures our “surprise,” i.e., how unlikely it is.
I(s) = � log

b

P{s}, where P{s} is the probability of s.
We take logs so that the information content of independent signals is
additive.
We can use any base, with corresponding units bits, nats, and dits (also,
hartleys, bans) for b = 2, e, 10.

¶3. 1 bit: Therefore, if a signal has a 50% probability, then it conveys one
bit of information.

¶4. Entropy of information: The entropy of a distribution of signals is
their average information content:

H(S) = E{I(s) | s 2 S} =
X

s2S

P{s}I(s) = �
X

s2S

P{s} logP{s}.
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Or more briefly, H = �P
k

p
k

log p
k

.

¶5. Shannon’s entropy: According to a well-known story, Shannon was
trying to decide what to call this quantity and had considered both
“information” and “uncertainty.” Because it has the same mathemat-
ical form as statistical entropy in physics, von Neumann suggested he
call it “entropy,” because “nobody knows what entropy really is, so in
a debate you will always have the advantage.”7

(This is one version of the quote.)

¶6. Uniform distribution: If there are N signals that are all equally
likely, then H = logN .
Therefore, if we have eight equally likely possibilities, the entropy is
H = lg 8 = 3 bits.

¶7. Macrostates and microstates: Consider a macroscopic system com-
posed of many microscopic parts (e.g., a fluid composed of many molecules).
In general a very large number of microstates (or microconfigurations)
— such as positions and momentums of molecules — will correspond
to a given macrostate (or macroconfiguration) — such as a combination
of pressure and termperature.

¶8. Thermodynamic entropy: Macroscopic thermodynamic entropy S
is related to microscopic information entropy H by Boltzmann’s con-
stant, which expresses the entropy in thermodynamical units (energy
over temperature).
S = k

B

H.
(There are technical details that I am skipping.)

¶9. Microstates representing a bit: Suppose we partition the microstates
of a system into two macrostates, one representing 0 and the other rep-
resenting 1.
Suppose N microconfigurations correspond to each macroconfiguration
(Fig. II.3).
If we confine the system to one half of its microstate space, to reresent
a 0 or a 1, then the entropy (average uncertainty in identifying the
microstate) will decrease by one bit.

7https://en.wikipedia.org/wiki/History of entropy (accessed 2012-08-24).
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Figure II.3: Physical microstates representing logical states. Setting the bit
changes the entropy by �H = lgN � lg(2N) = �1 bit. That is, we have one
bit of information about its microstate.

We don’t know the exact microstate, but at least we know which half
of the statespace it is in.

¶10. Overwriting a bit: Consider the erasing or overwriting of a bit whose
state was originally another known bit.

¶11. We are losing one bit of physical information. The physical information
still exists, but we have lost track of it.

Suppose we have N physical microstates per logical macrostate (0 or
1). Therefore, there are N states in the bit we are writing and N in the
bit to be overwritten. But there can be only N is the rewritten bit, so
N must be dissipated into the environment. �S = k ln(2N)�k lnN =
k ln 2 = 1 bit dissipated. (Fig. II.3)

¶12. The increase of entropy is �S = k ln 2, so the increase of energy in the
heat reservoir is �S ⇥ T

env

= kT
env

ln 2 ⇡ 0.7kT
env

. (Fig. II.4)
kT

env

ln 2 ⇡ 18 meV ⇡ 3⇥ 10�9pJ.

¶13. von Neumann – Landauer bound: This is the von Neumann –

Landauer (VNL) bound. VN suggested the idea in 1949, but it was
published first by Rolf Landauer (IBM) in 1961.

¶14. “From a technological perspective, energy dissipation per logic oper-
ation in present-day silicon-based digital circuits is about a factor of
1,000 greater than the ultimate Landauer limit, but is predicted to
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Figure II.4: Bit A = 1 is copied over bit B (two cases: B = 0 and B = 1).
In each case there are W = N2 micro states representing each prior state,
so a total of 2W microstates. However, at time t + �t the two-bit system
must be on one of W posterior microstates. Therefore W of the trajectories
have exited the A = B = 1 region of phase space, and so they are no longer
logically meaningful. �S = k ln(2W )� k lnW = k ln 2 = 1 bit dissipated.

quickly attain it within the next couple of decades.” [EVLP]
That is, current circuits are about 18 eV.

¶15. Experimental confirmation: In March 2012 the Landauer bound
was experimentally confirmed [EVPL].

A.2.d Reversible logic

¶1. To avoid dissipation, don’t erase information. The problem is to keep
track of information that would otherwise be dissipated.

¶2. This is accomplished by making computation logically reversible.

(It is already physically reversible.)

¶3. The information is rearranged and recombined in place. (We will see
lots of examples of how to do this.)

A.2.e Progress

¶1. In 1973, Charles Bennett (IBM) first showed how any computation
could be embedded in an equivalent reversible computation. Rather
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than discarding information, it keeps it around so it can later “decom-
pute” it. This was logical reversibility; he did not deal with the problem
of physical reversibility.

¶2. Brownian Computers: Or “Brownian motion machines.” This was
an attempt to suggest a possible physical implementation of reversible
computation.
“the mean free path of the system’s trajectory was much shorter than
the distance between neighboring computational states” (see also [B82]).

¶3. Therefore: “In absence of any energy input, the system progressed
essentially via a random walk, taking an expected time of ⇥(n2) to
advance n steps.”

¶4. A small energy input biases the process in the forward direction, so
that it precedes linearly, but still very slowly.

¶5. Compare “DNA polymerization, which (under normal conditions, such
as during cell division) proceeds at a rate on the order of only 1,000
nucleotides per second, with a dissipation of ⇠ 40k

B

T per step.”
This is about 1 eV (see §8 below).
Note that DNA replication includes error-correcting operations.

¶6. Digression: DNA data storage: A team at Harvard has just re-
ported converting a 53,000 word book to DNA and then reading it out
by DNA sequencing.8

This is the densest consolidation of data in any medium (including flash
memory, but also experimental media, such as quantum holography).
The book included 11 jpegs and a javascript program, for a total of
5.27 Mbits.
The decoded version had only 10 incorrect bits.
The book could be reproduced by DNA replication.
(The cost of DNA synthesis has been decreasing about 5⇥ per year,
and the cost of sequencing by about 12⇥ per year.)

¶7. Energy coe�cient: Since “asymptotically reversible processes (in-
cluding the DNA example) proceed forward at an adjustable speed,

8http://spectrum.ieee.org/biomedical/imaging/reading-and-writing-a-book-with-dna/
(accessed 2012-08-24). See also Science (Aug. 16, 2012), DOI: 10.1126/science.1226355
(accessed 2012-08-24).
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proportional to the energy dissipated per step,” define an energy coef-

ficient:

c
E

def

= E
diss

/f
op

,

“where E
diss

is the energy dissipated per operation, and f
op

is the fre-
quency of operations.”

¶8. “In Bennett’s original DNA process, the energy coe�cient comes out
to about c

E

= 1eV/kHz.”
That is, for DNA, c

E

⇡ 40kT/kHz = 40⇥ 26 meV/kHz ⇡ 1 eV/kHz.

¶9. But it would be desirable to operate at GHz frequencies and energy
dissipation below k

B

T .
Recall that at room temp. k

B

T ⇡ 26 meV (Sec. A.1 §6, p. 8).
So we need energy coe�cients much lower than DNA.
This is an issue, of course, for molecular computation.

¶10. Information Mechanics group: In 1970s, Ed Fredkin, Tommaso
To↵oli, et al. at MIT.

¶11. Ballistic computing: F & T described computation with idealized,
perfectly elastic balls reflecting o↵ barriers. Minimum dissipation, pro-
pelled by (conserved) momentum. Unrealistic. Later we will look at it
briefly.

¶12. They suggested a more realistic implementation involving “charge pack-
ets bouncing around along inductive paths between capacitors.”

¶13. Richard Feynman (CalTech) had been interacting with IM group, and
developed “a full quantummodel of a serial reversible computer” (Quant.
mech. comps., Found. Phys., 16, 6 (1986), 507–531).

¶14. Adiabatic circuit: Since 1980s there has been work in adiabatic cir-

cuits, esp. in 1990s.
An adiabatic process takes place without input or dissipation of energy.
Adiabatic circuits minimize energy use by obeying certain circuit design
rules. “[A]rbitrary, pipelined, sequential logic could be implemented
in a fully-reversible fashion, limited only by the energy coe�cients and
leakage currents of the underlying transistors.”
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¶15. As of 2004, est. c
E

= 3 meV/kHz, about 250⇥ less than DNA.

¶16. “It is di�cult to tell for certain, but a wide variety of post-transistor
device technologies have been proposed . . . that have energy coe�-
cients ranging from 105 to 1012 times lower than present-day CMOS!
This translates to logic circuits that could run at GHz to THz frequen-
cies, with dissipation per op that is still less (in some cases orders of
magnitude less) than the VNL bound of k

B

T ln 2 . . . that applies to
all irreversible logic technologies. Some of these new device ideas have
even been prototyped in laboratory experiments [2001].”

¶17. “Fully-reversible processor architectures [1998] and instruction sets [1999]
have been designed and implemented in silicon.”

¶18. But this is more the topic of a CpE course. . .


