
C. THERMODYNAMICS OF COMPUTATION 37

C Thermodynamics of computation

This lecture is based on Charles H. Bennett’s “The Thermodynamics of Com-
putation — a Review,” Int. J. Theo. Phys., 1982 [B82]. Unattributed quo-
tations are from this paper.

“Computers may be thought of as engines for transforming free energy
into waste heat and mathematical work.” [B82]

C.1 Brownian computers

¶1. Rather than trying to avoid randomization of kinetic energy (transfer
from mechanical modes to thermal modes), perhaps it can be exploited.
An example of respecting the medium in embodied computation.

¶2. Brownian computer: Makes logical transitions as a result of thermal
agitation.
It is about as likely to go backward as forward.
It may be biased in the forward direction by a very weak external
driving force.

¶3. DNA: DNA transcription is an example. It runs at about 30 nu-
cleotides per second and dissipates about 20kT per nucleotide, making
less than one mistake per 105 nucleotides.

¶4. Chemical Turing machine: Tape is a large macromolecule analogous
to RNA.
An added group encodes the state and head location.
For each tradition rule there is a hypothetical enzyme that catalyzes
the state transition.

¶5. Drift velocity is linear in dissipation per step.

¶6. We will look molecular computation in much more detail later in the
class.

¶7. Clockwork Brownian TM: He considers a “clockwork Brownian
TM” comparable to the billiard ball computers. It s a little more
realistic, since it does not have to be machined perfectly and tolerates
environmental noise.

¶8. Drift velocity is linear in dissipation per step.

38 CHAPTER II. PHYSICS OF COMPUTATION

Figure II.23: Di↵erent degrees of logical reversibility. [from B82]

C.2 Reversible computing

C.2.a Reversible TM

¶1. Bennett (1973) defined a reversible TM.

C.2.b Reversible logic

¶1. As in ballistic computing, Brownian computing needs logical reversibil-
ity.

¶2. A small degree of irreversibility can be tolerated (see Fig. II.23).
(A) Strictly reversible computation. Any driving force will ensure for-
ward movement.
(B) Modestly irreversible computation. There are more backward de-
tours, but can still be biased forward.
(C) Exponentially backward branching trees. May spend much more
of its time going backward than going forward, especially since one
backward step is likely to lead to more backward steps.

¶3. For forward computation on such a tree the dissipation per step must
exceed kT times the log of the mean number of immediate predecessors

C. THERMODYNAMICS OF COMPUTATION 39

to each state.

¶4. These undesired states may outnumber desired states by factors of 2100,
requiring driving forces on the order of 100kT .
Why 2100? Think of the number of possible predecessors to a state that
does something like x := 0. Or the number of ways of getting to the
next statement after a loop.

C.3 Erasure

¶1. As it turns out, it is not measurement or copying that necessarily dis-
sipates energy, it is the erasure of previous information to restore it to
a standard state so that it can be used again.
Thus, in a TM writing a symbol on previously used tape requires two
steps: erasing the previous contents and then writing the new contents.
It is the former process that increases entropy and dissipates energy.
Cf. the mechanical TM we saw in CS312; it erased the old symbol be-
fore it wrote the new one.
Cf. also old computers on which the store instruction was called “clear
and add.”

¶2. A bit can be copied reversibly, with arbitrarily small dissipation, if it
is initially in a standard state (Fig. II.24).
The reference bit (fixed at 0, the same as the moveable bit’s initial
state) allows the initial state to be restored, thus ensuring reversibility.

¶3. Susceptible to degradation by thermal fluctuation and tunneling. How-
ever, the error probability ⌘ and dissipation ✏/kT can be kept arbitrarily
small and much less than unity.
✏ here is the driving force.

¶4. Whether erasure must dissipate energy depends on the prior state (Fig.
II.25).

(B) The initial state is genuinely unknown. This is reversible (step
6 to 1). kT ln 2 work was done to compress it into the left potential
well (decreasing the entropy). Reversing the operation increases the
entropy by kT ln 2.
That is, the copying is reversible.

40 CHAPTER II. PHYSICS OF COMPUTATION

Figure II.24: [from B82]

C. THERMODYNAMICS OF COMPUTATION 41

Figure II.25: [from B82]

42 CHAPTER II. PHYSICS OF COMPUTATION

(C) The initial state is known (perhaps as a result of a prior computa-
tion or measurement). This initial state is lost (forgotten), converting
kT ln 2 of work into heat with no compensating decrease of entropy.
The irreversible entropy increase happens because of the expansion at
step 2. This is where we’re forgetting the initial state (vs. case B, where
there was nothing known to be forgotten).

¶5. In research reported in March 2012 [EVLP] a setup very much like this
was used to confirm experimentally the Landauer Principle and that it
is the erasure that dissipates energy.

“incomplete erasure leads to less dissipated heat. For a success rate of
r, the Landauer bound can be generalized to”

hQir
Landauer

= kT [ln 2 + r ln r + (1� r) ln(1� r)].

“Thus, no heat needs to be produced for r = 0.5.” [EVLP]

¶6. We have seen that erasing a random register increases entropy in the
environment in order to decrease it in the register: NkT ln 2 for an
N -bit register.

¶7. Such an initialized register can be used as “fuel” as it thermally ran-
domizes itself to do NkT ln 2 useful work.
Keep in mind that these 0s (or whatever) are physical states (charges,
compressed gas, magnetic spins, etc.).

¶8. Any computable sequence of N bits (e.g., the first N bits of ⇡) can be
used as fuel by a slightly more complicated apparatus. Start with a
reversible computation from N 0s to the bit string.
Reverse this computation, which will transform the bit string into all
0s, which can be used as fuel. This “uncomputer” puts it in usable
form.

¶9. Suppose we have a random bit string, initialized, say, by coin tossing.
Because it has a specific value, we can in principle get NkT ln 2 useful
work out of it, but we don’t know the mechanism (the “uncomputer”)
to do it. The apparatus would be specific to each particular string.

C. THERMODYNAMICS OF COMPUTATION 43

C.4 Algorithmic entropy

¶1. Algorithmic information theory was developed by Ray Solomono↵ c.
1960, Andrey Kolmogorov in 1965, and Gregory Chaitin, around 1966.

¶2. Algorithmic entropy: The algorithmic entropy H(x) of a microstate
x is the number of bits required to describe x as the output of a uni-
versal computer, roughly, the size of the program required to compute
it.
Specifically the smallest “self-delimiting” program (i.e., its end can be
determined from the bit string itself).

¶3. Di↵erences in machine models lead to di↵erences of O(1), and so H(x)
is well-defined up to an additive constant (like thermodynamical en-
tropy).

¶4. Note that H is not computable.

¶5. Algorithmically random: A string is algorithmically random if it
cannot be described by a program very much shorter than itself.

¶6. For any N , most N -bit strings are algorithmically random.
(For example, “there are only enough N � 10 bit programs to describe
at most 1/1024 of all the N -bit strings.”)

¶7. Deterministic transformations cannot increase algorithmic entropy very
much.
Roughly, H[f(x)] ⇡ H(x) + |f |, where |f | is the size of program f .
Reversible transformations also leave H unchanged.

¶8. A transformation must be probabilistic to be able to increase H signif-
icantly.

¶9. Statistical entropy: Statistical entropy in units of bits is defined:

S
2

(p) = �
X

x

p(x) lg p(x).

¶10. Statistical entropy (a function of the macrostate) is related to algorith-
mic entropy (an average over algorithmic entropies of microstates) as
follow:

S
2

(p) <
X

x

p(x)H(x) S
2

(p) +H(p) +O(1).

44 CHAPTER II. PHYSICS OF COMPUTATION

¶11. A macrostate p is concisely describable if, for example, “it is determined
by equations of motion and boundary conditions describable in a small
number of bits.”
In this case S

2

and H are closely related as given above.

¶12. For macroscopic systems, typically S
2

(p) = O(1023) while H(p) =
O(103).

¶13. If the physical system increases its H by N bits, which it can do only by
acting probabilistically, it can “convert about NkT ln 2 of waste heat
into useful work.”

¶14. “[T]he conversion of about NkT ln 2 of work into heat in the surround-
ings is necessary to decrease a system’s algorithmic entropy by N bits.”

D Sources

B82 Bennett, C. H. The Thermodynamics of Computation — a Review.
Int. J. Theo. Phys., 21, 12 (1982), 905–940.

EVLP Berut, Antoine, Arakelyan, Artak, Petrosyan, Artyom, Ciliberto,
Sergio, Dillenschneider, Raoul and Lutz, Eric. Experimental verifica-
tion of Landauer’s principle linking information and thermodynamics.
Nature 483, 187–189 (08 March 2012). doi:10.1038/nature10872

F Frank, Michael P. Introduction to Reversible Computing: Motivation,
Progress, and Challenges. CF ‘05, May 4–6, 2005, Ischia, Italy.

FT82 Fredkin, E. F., To↵oli, T. Conservative logic. Int. J. Theo. Phys., 21,
3/4 (1982), 219–253.

E Exercises

Exercise II.1 Show that the Fredkin gate is reversible.

Exercise II.2 Show that the Fredkin gate implementations of the NOT,
OR, and FAN-OUT gates (Fig. II.12) are correct.

E. EXERCISES 45

Figure 8 Realization of the J-K flip-flop.

Finally, Figure 8 shows a conservative-logic realization of the J-¬K flip-flop. (In a figure, when the explicit
value of a sink output is irrelevant to the discussion we shall generically represent this value by a question
mark.) Unlike the previous circuit, where the wires act as "transmission" lines, this is a sequential network
with feedback, and the wire plays an effective role as a "storage" element.

4. COMPUTATION UNIVERSALITY OF CONSERVATIVE LOGIC
An important result of conservative logic is that it is possible to preserve the computing capabilities of
ordinary digital logic while satisfying the "physical" constraints of reversibility and conservation.
Let us consider an arbitrary sequential network constructed out of conventional logic elements, such as AND
and OR gates, inverters (or "NOT" gates), FAN-OUT nodes, and delay elements. For definiteness, we shall
use as an example the network of Figure 9-a serial adder (mod 2). By replacing in a one-to-one fashion these
elements (with the exception of the delay element-cf. footnote at the end of Section 3) with a conservative-
logic realization of the same elements (as given, for example, in Figures 4b, 6a, 6b, and 6c), one obtains a
conservative-logic network that performs the same computation (Figure 10). Such a realization may involve
a nominal slow-down factor, since a path that in the original network contained only one delay element may
now traverse several unit wires. (For instance, the realization of Figure 9 has a slow-down factor of 5; note,
however, that only every fifth time slot is actually used for the given computation, and the remaining four
time slots are available for other independent computations, in a time-multiplexed mode.) Moreover, a
number of constant inputs must be provided besides the argument, and the network will yield a number of
garbage outputs besides the result.

Figure 9. An ordinary sequential network computing the sum (mod 2) of a stream of binary digits. Recall

that a (+) b = ab +ab.

Figure II.26: Implementation of J-K̄ flip-flop. [from FT82]

Exercise II.3 Use the Fredkin gate to implement XOR.

Exercise II.4 Show for the eight possible inputs that Fig. II.13 is a correct
implementation of a 1-line to 4-line demultiplexer. That is, show in each
of the four cases A

1

A
0

= 00, 01, 10, 11 the bit X = 0 or 1 gets routed to
Y
0

, Y
1

, Y
2

, Y
3

, respectively. You can use an algebraic proof, if you prefer.

Exercise II.5 Show that implementation of a J-K̄ flip-flop with Fredkin
gates in Fig. II.26 is correct. A J-K̄ flip-flop has the following behavior:

J K̄ behavior
0 0 reset, Q ! 0
0 1 hold, Q doesn’t change
1 0 toggle, Q ! Q̄
1 1 set, Q ! 1

Exercise II.6 Show that the inverse of the interaction gate works correctly.

Exercise II.7 Show that the realization of the Fredkin gate in terms of
interaction gates (Fig. II.22) is correct, by labeling the inputs and outputs
of the interaction gates with Boolean expressions of a, b, and c.

