B. BASIC CONCEPTS FROM QUANTUM THEORY

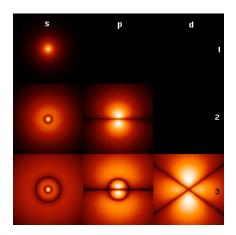


Figure III.1: Probability density of first six hydrogen orbitals. The main quantum number (n = 1, 2, 3) and the angular momentum quantum number $(\ell = 0, 1, 2 = s, p, d)$ are shown. (The magnetic quantum number m = 0 in these plots.) [fig. from wikipedia commons]

B Basic concepts from quantum theory

B.1 Postulates of QM

Quotes are from Nielsen, Michael A. & Chuang, Isaac L. *Quantum Computation and Quantum Information* (10th Anniversary Edition, Cambridge, 2010) unless otherwise specified.

B.1.a Postulate 1: state space

- ¶1. Associated with any isolated physical system is a *state space*, which is a Hilbert space.
- **¶**2. The state of the system "is completely defined by its *state vector*, which is a unit vector in the system's state space."
- ¶3. The state $|\psi\rangle$ is understood as a *wavefunction*.
- ¶4. A wavefunction for a particle defines the *probability amplitude* distribution (actually probability density function) of some quantity. For example, $|\psi\rangle$ may define the complex amplitude $\psi(x)$ associated with

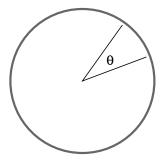


Figure III.2: Relative phase vs. global phase. What matters in QM is relative phases between state vectors (e.g., θ in the figure). Global phase "has no physical meaning"; i.e., we can choose to put the 0° point any where we like.

each location x, and $|\phi\rangle$ may define the complex amplitude of $\phi(p)$ associated with each momentum p. See Fig. III.1.

- **¶**5. **Normalization:** The state vector has to be normalized so that the total probability is 1.
- **¶6.** Inner product: The inner product of wavefunctions is defined:

$$\langle \phi \mid \psi \rangle = \int_{\mathbb{R}^3} \overline{\phi(\mathbf{r})} \psi(\mathbf{r}) \mathrm{d}\mathbf{r}$$

For this example we are assuming the domain is 3D space.

- ¶7. Global vs. relative phase: In QM, global phase has no physical meaning; all that matters is relative phase. In other words, if you consider all the angles around the circle, there is no distinguished 0°. See Fig. III.2. Likewise, in a continuous wave (such as sine), there is no distinguished starting point (see Fig. III.3).
- ¶8. To say all pure states are normalized is another way to say that their absolute length has no physical meaning. That is, only their *form* (shape) matters, not their absolute size. This is a characteristic of *information*.
- **¶9. Projective Hilbert space:** Pure states correspond to the *rays* in a *projective Hilbert space*.

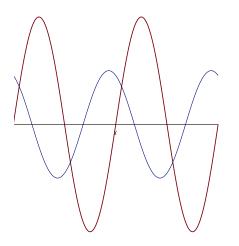


Figure III.3: Relative phase vs. global phase of sine waves. There is no privileged point from which to start measuring absolute phase, but there is a definite relative phase between the two waves.

A ray is an equivalence class of nonzero vectors under the relation, $\phi \cong \psi$ iff $\exists z \neq 0 \in \mathbb{C} : \phi = z\psi$, where $\phi, \psi \neq \mathbf{0}$. However, it is more convenient to use normalized vectors in ordinary

Hilbert spaces, ignoring global phase.

B.1.b Postulate 2: evolution

 $\P 1.$ "The evolution of a closed quantum system is described by a unitary transformation."

Therefore a closed quantum system evolves by complex rotation of a Hilbert space.

¶2. That is, the state $|\psi\rangle$ of the system at time t is related to the state $|\psi'\rangle$ of the system at time t' by a unitary operator U which depends only on the times t and t',

$$|\psi'\rangle = U(t,t')|\psi\rangle = U|\psi\rangle.$$

- ¶3. See Sec. B.6, below.
- ¶4. This describes the evolution of systems that don't interact with the rest of the world.

- **B.1. C** POSTULATE 3: QUANTUM MEASUREMENT
 - **¶**1. What happens if the system is no longer closed, i.e., it interacts with the larger environment?
 - ¶2. Postulate 3: Quantum measurements are described by a collection of quantum measurement operators, M_m , for each possible measurement outcome m.
 - ¶3. The probability of measurement m of state $|\psi\rangle$ is:

$$p(m) = \|M_m|\psi\rangle\|^2 = \langle \psi \mid M_m^{\dagger} M_m \mid \psi \rangle.$$
(III.1)

¶4. Born's Rule: After measurement the state of the system is (unnormalized) $M_m |\psi\rangle$, or normalized:

$$\frac{M_m |\psi\rangle}{\|M_m |\psi\rangle\|}$$

- ¶5. Measurement operations satisfy the completeness relation: $\sum_{m} M_{m}^{\dagger} M_{m} = I$.
- **¶**6. That is, the measurement probabilities sum to 1:

$$1 = \sum_{m} p(m) = \sum_{m} \langle \psi \mid M_m^{\dagger} M_m \mid \psi \rangle.$$

- ¶7. **Observable:** An *observable* M is a Hermitian operator on the state space.
- **¶8.** Projective measurements: An observable M has a spectral decomposition

$$M = \sum_{m} e_m P_m,$$

where the P_m are *projectors* onto the eigenspace of M, and the eigenvalues e_m are the corresponding measurement results.

The projector P_m projects into the eigenspace corresponding to eigenvalue e_m .

(For projectors, see Sec. A.2.i, ¶6.)

- ¶9. Since a projective measurement is described by a Hermitian operator M, it has a spectral decomposition with real eigenvalues, $M = \sum_{i} e_{j} |\eta_{j} \rangle \langle \eta_{j} |$, where η_{j} is the measurement basis.
- ¶10. Therefore we can write $M = UEU^{\dagger}$, where $E = \text{diag}(e_1, e_2, \ldots), U = (|\eta_1\rangle, |\eta_2\rangle, \ldots)$, and

$$U^{\dagger} = (|\eta_1\rangle, |\eta_2\rangle, \ldots)^{\dagger} = \begin{pmatrix} \langle \eta_1 | \\ \langle \eta_2 | \\ \vdots \end{pmatrix}$$

 U^{\dagger} expresses the state in the measurement basis and U translates back.

- ¶11. In the measurement basis, the matrix for an observable is a diagonal matrix: $E = \text{diag}(e_1, \ldots, e_m)$.
- ¶12. This is a special case of Postulate 3 in which the " M_m are orthogonal projectors, that is, the M_m are Hermitian, and $M_m M_{m'} = \delta_{m,m'} M_{m'}$." That is $M_m M_m = M_m$ (idempotent), and $M_m M_{m'} = \mathbf{0}$ for $m \neq m'$ (orthogonal). Also, since M_m is Hermitian, $M_m^{\dagger} M_m = M_m M_m = M_m$.
- ¶13. The probability of measuring e_m is

$$p(m) = \langle \psi \mid M_m^{\dagger} M_m \mid \psi \rangle = \langle \psi \mid M_m \mid \psi \rangle = \langle \psi \mid P_m \mid \psi \rangle.$$

¶14. Suppose $P_m = |m\rangle\langle m|$ and $|\psi\rangle = \sum_j c_j |j\rangle$ (i.e., write it in the measurement basis). Then

$$p(m) = \langle \psi | P_m | \psi \rangle$$

= $\langle \psi | m \rangle \langle m | \psi \rangle$
= $\langle m | \psi \rangle^* \langle m | \psi \rangle$
= $|\langle m | \psi \rangle|^2$
= $|c_m|^2$.

¶15. More generally, the same hold if P_m projects into an eigenspace, $P_m = \sum_k |k\rangle\langle k|$.

Alternatively, we can "zero out" the c_j for the orthogonal subspace, i.e., for the $|j\rangle$ omitted by P_m .

¶16. To maintain total probability = 1, the state after measurement is

$$\frac{P_m|\psi\rangle}{\sqrt{p(m)}} = \frac{P_m|\psi\rangle}{\|P_m|\psi\rangle\|}.$$

- ¶17. Motivation: To understand the motivation for this, suppose we have a quantum system (such as an atom) that can be in three distinct states $|\text{ground}\rangle$, $|\text{first excited}\rangle$, $|\text{second excited}\rangle$ with energies e_0, e_1, e_2 , respectively. Then the energy observable is the operator
 - $E = e_0 |\text{ground} \chi \text{ground}| + e_1 |\text{first excited} \chi \text{first excited}|$ $+ e_2 |\text{second excited} \chi \text{second excited}|,$

or more briefly, $\sum_{j=0}^{2} e_j |j\rangle\langle j|$.

¶18. Mean or expectation value: We can derive the mean or expectation value of an energy measurement for a given quantum state:

$$\begin{split} \langle E \rangle &\stackrel{\text{def}}{=} & \mu_E \stackrel{\text{def}}{=} & \mathcal{E} \{ E \} \\ &= & \sum_j e_j p(j) \\ &= & \sum_j e_j \langle \psi \mid j \rangle \langle j \mid \psi \rangle \\ &= & \sum_j \langle \psi \mid e_j \mid j \rangle \langle j \mid \mid \psi \rangle \\ &= & \langle \psi \mid \left(\sum_j e_j \mid j \rangle j \mid \right) \mid \psi \rangle \\ &= & \langle \psi \mid E \mid \psi \rangle. \end{split}$$

¶19. Variance and standard deviation: This yields the formula for the standard deviation σ_E and variance, which are important in the uncertainty principle:

$$\sigma_E^2 \stackrel{\text{def}}{=} (\Delta E)^2 \stackrel{\text{def}}{=} \operatorname{Var}\{E\}$$

= $\mathcal{E}\{(E - \langle E \rangle)^2\}$
= $\langle E^2 \rangle - \langle E \rangle^2$
= $\langle \psi \mid E^2 \mid \psi \rangle - (\langle \psi \mid E \mid \psi \rangle)^2.$

B. BASIC CONCEPTS FROM QUANTUM THEORY

Note that E^2 , the matrix E multipled by itself, is also the operator that measures the square of the energy, $E^2 = \sum_j e_j^2 |j\rangle\langle j|$. (This is because E is diagonal in this basis; alternately, E^2 can be interpreted as an operator function.)

B.1.d POSTULATE 4: COMPOSITE SYSTEMS

- **¶**1. "The state space of a composite physical system is the tensor product of the state spaces of the component physical systems."
- ¶2. If there are n subsystems, and subsystem j is prepared in state $|\psi_j\rangle$, then the composite system is in state

$$|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle = \bigotimes_{j=1}^n |\psi_j\rangle.$$