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B.4 Superposition

B.4.a BASES
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In QM certain physical quantities are quantized, such as the energy of
an electron in an atom.

Therefore an atom might be in certain distinct energy states |ground),
|first excited), |second excited), ...

Other particles might have distinct states such as spin-up | 1) and
spin-down | |).

In each case these alternative states are orthonormal: (T|]) = 0;
(ground | first excited) = 0, (ground | second excited) = 0, (first excited |
second excited) = 0.

In general we may express the same state with respect to different bases,
such as vertical or horizontal polarization | —), | 1); or orthogonal
diagonal polarizations | ), | \).

B.4.b SUPERPOSITIONS OF BASIS STATES
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One of the unique characteristics of QM is that a physical system can
be in a superposition of basis states, for example,

|1)) = colground) + ¢;first excited) + cz|second excited),
where the ¢; are complex numbers, called (probability) amplitudes.
Since ||[)]] = 1, we know |co|?> + |c1|* + |ca]? = 1.

With respect to a given basis, a state [¢)) is interchangeable with its vec-
tor of coefficients, ¢ = (cg, ¢y, ...,c,)T. When the basis is understood,
we can use |¢) as a name for this vector.

Quantum parallelism: The ability of a quantum system to be in
many states simultaneously is the foundation of quantum parallelism.

Measurement: As we will see, when we measure the quantum state
co|Eo) +c1|Er) + ...+ el En)

with respect to the |Ep), ..., |E,) basis, we will get the result |E;) with
probability |¢;|* and the state will “collapse” into state |E;).
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Figure I11.4: Fig. from 1QC.

96.

q7.

Qubit: For the purposes of quantum computation, we usually pick two
basis states and use them to represent the bits 1 and 0, for example,
|1) = |ground) and |0) = |excited).

I've picked the opposite of the “obvious” assignment (]0) = |ground))
just to show that the assignment is arbitrary (just as for classical bits).

Note that |0) # 0, the zero element of the vector space, since |||0)|| = 1
but [|0]] = 0. (Thus 0 does not represent a physical state.)

B.4.c PHOTON POLARIZATION EXPERIMENT

See Fig. I11.4.
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Experiment: Suppose we have three polarizing filters, A, B, and C,
polarized horizontally, 45°, and vertically, respectively.

Place filter A between strong light source and screen. Intensity is re-
duced by half and light is horizontally polarized.

(Note: intensity would be much less if it allowed only horizontally po-
larized light through, as in sieve model.)

Insert filter C and intensity drops to zero. No surprise, since cross-
polarized.

Insert filter B between A and C, and some light (about 1/8 intensity)
will return!
Can’t be explained by sieve model.

Explanation: A photon’s polarization state can be represented by a
unit vector pointing in appropriate direction.
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Figure I11.5: Alternative polarization bases for measuring photons (black =
rectilinear basis, red = diagonal basis). Note | ) = \%(| Y+ | —)) and

=) = (1 2+ \)).

96. Arbitrary polarization can be expressed by a|0) +b|1) for any two basis
vectors |0), |1), where |al? + |b]? = 1.

q7. A polarizing filter measures a state with respect to a basis that includes
a vector parallel to polarization and one orthogonal to it.

98. Applying filter A to |¢) oo al —) +b| 1) yields
(=1 ¥) = (= [(a] =) +0[ 1) = a(=]=) + b(=[T) = a
So with probability |a|? we get | —). Recall (Eqn. II1.1, p. 62):

p(l =) = (=17 = lal.

€9. So if the polarizations are randomly distributed from the source, half
will get through with resulting photons all | —).

Why 1/2? Note a = cosf and (a?) = - fozr cos? 0 df = 1.

910. When we insert filter C we are measuring with (1 | and the result is 0,
as expected.
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Diagonal filter: Filter B measures with respect to the {| ), | \,)}
basis. See Fig. IIL.5.

To find the result of applying filter B to the horizontally polarized light,
we must express | —) in the diagonal basis:

1

V2

So if filter B = (| we get | ) with probability 1/2.

| =)

(7 + 1)

The effect of filter C, then, is to measure | /') by projecting against

(1 |. Note
1

V2

Therefore we get | 1) with another 1/2 decrease in intensity (so 1/8
overall).

| 7)== +1=))



