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B.4 Superposition

B.4.a Bases

¶1. In QM certain physical quantities are quantized, such as the energy of
an electron in an atom.
Therefore an atom might be in certain distinct energy states |groundi,
|first excitedi, |second excitedi, . . .

¶2. Other particles might have distinct states such as spin-up | "i and
spin-down | #i.

¶3. In each case these alternative states are orthonormal: h"|#i = 0;
hground | first excitedi = 0, hground | second excitedi = 0, hfirst excited |
second excitedi = 0.

¶4. In general we may express the same state with respect to di↵erent bases,
such as vertical or horizontal polarization | !i, | "i; or orthogonal
diagonal polarizations | %i, | &i.

B.4.b Superpositions of Basis States

¶1. One of the unique characteristics of QM is that a physical system can
be in a superposition of basis states, for example,
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where the cj are complex numbers, called (probability) amplitudes.

¶2. Since k| ik = 1, we know |c
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¶3. With respect to a given basis, a state | i is interchangeable with its vec-
tor of coe�cients, c = (c
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, . . . , cn)T. When the basis is understood,
we can use | i as a name for this vector.

¶4. Quantum parallelism: The ability of a quantum system to be in
many states simultaneously is the foundation of quantum parallelism.

¶5. Measurement: As we will see, when we measure the quantum state
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with respect to the |E
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i, . . . , |Eni basis, we will get the result |Eji with
probability |cj|2 and the state will “collapse” into state |Eji.
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Finally, after filterB is inserted betweenA andC, a small amount of light will be visible
on the screen, exactly one eighth of the original amount of light.

A B C

Here we have a nonintuitive effect. Classical experience suggests that adding a filter should
only be able to decrease the number of photons getting through. How can it increase it?

2.1.2 The Explanation. A photon’s polarization state can be modelled by a unit vector
pointing in the appropriate direction. Any arbitrary polarization can be expressed as a
linear combination a|"i+b|!i of the two basis vectors2 |!i (horizontal polarization) and
|"i (vertical polarization).
Since we are only interested in the direction of the polarization (the notion of “magni-

tude” is not meaningful), the state vector will be a unit vector, i.e., |a|2 + |b|2 = 1. In
general, the polarization of a photon can be expressed as a|"i + b|!i where a and b are
complex numbers3 such that |a|2 + |b|2 = 1. Note, the choice of basis for this representa-
tion is completely arbitrary: any two orthogonal unit vectors will do (e.g. {|�i, |%i}).
The measurement postulate of quantum mechanics states that any device measuring a 2-

dimensional system has an associated orthonormal basis with respect to which the quantum
measurement takes place. Measurement of a state transforms the state into one of the
measuring device’s associated basis vectors. The probability that the state is measured as
basis vector |ui is the square of the norm of the amplitude of the component of the original
state in the direction of the basis vector |ui. For example, given a device for measuring
the polarization of photons with associated basis {|"i, |toi}, the state � = a|"i + b|!i is
measured as |"i with probability |a|2 and as |!i with probability |b|2 (see Figure 1). Note
that different measuring devices with have different associated basis, and measurements
using these devices will have different outcomes. As measurements are always made with
respect to an orthonormal basis, throughout the rest of this paper all bases will be assumed
to be orthonormal.
Furthermore, measurement of the quantum state will change the state to the result of the

measurement. That is, if measurement of � = a|"i + b|!i results in |"i, then the state
� changes to |"i and a second measurement with respect to the same basis will return |"i
with probability 1. Thus, unless the original state happened to be one of the basis vectors,
measurement will change that state, and it is not possible to determine what the original
state was.

2The notation |�� is explained in section 2.2.
3Imaginary coefficients correspond to circular polarization.

Figure III.4: Fig. from IQC.

¶6. Qubit: For the purposes of quantum computation, we usually pick two
basis states and use them to represent the bits 1 and 0, for example,
|1i = |groundi and |0i = |excitedi.
I’ve picked the opposite of the “obvious” assignment (|0i = |groundi)
just to show that the assignment is arbitrary (just as for classical bits).

¶7. Note that |0i 6= 0, the zero element of the vector space, since k|0ik = 1
but k0k = 0. (Thus 0 does not represent a physical state.)

B.4.c Photon polarization experiment

See Fig. III.4.

¶1. Experiment: Suppose we have three polarizing filters, A, B, and C,
polarized horizontally, 45�, and vertically, respectively.

¶2. Place filter A between strong light source and screen. Intensity is re-
duced by half and light is horizontally polarized.
(Note: intensity would be much less if it allowed only horizontally po-
larized light through, as in sieve model.)

¶3. Insert filter C and intensity drops to zero. No surprise, since cross-
polarized.

¶4. Insert filter B between A and C, and some light (about 1/8 intensity)
will return!
Can’t be explained by sieve model.

¶5. Explanation: A photon’s polarization state can be represented by a
unit vector pointing in appropriate direction.
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Figure III.5: Alternative polarization bases for measuring photons (black =
rectilinear basis, red = diagonal basis). Note | %i = 1p

2

(| "i + | !i) and

| !i = 1p
2

(| %i + | &i).

¶6. Arbitrary polarization can be expressed by a|0i+b|1i for any two basis
vectors |0i, |1i, where |a|2 + |b|2 = 1.

¶7. A polarizing filter measures a state with respect to a basis that includes
a vector parallel to polarization and one orthogonal to it.

¶8. Applying filter A to | i def

= a| !i + b| "i yields

h!|  i = h! |(a| !i + b| "i) = ah!|!i + bh!|"i = a.

So with probability |a|2 we get | !i. Recall (Eqn. III.1, p. 62):

p(| !i) = kh!|  ik2 = |a|2.

¶9. So if the polarizations are randomly distributed from the source, half
will get through with resulting photons all | !i.
Why 1/2? Note a = cos ✓ and ha2i = 1
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2

.

¶10. When we insert filter C we are measuring with h" | and the result is 0,
as expected.
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¶11. Diagonal filter: Filter B measures with respect to the {| %i, | &i}
basis. See Fig. III.5.

¶12. To find the result of applying filter B to the horizontally polarized light,
we must express | !i in the diagonal basis:

| !i = 1p
2
(| %i + | &i).

¶13. So if filter B = h% | we get | %i with probability 1/2.

¶14. The e↵ect of filter C, then, is to measure | %i by projecting against
h" |. Note

| %i = 1p
2
(| "i + | !i).

¶15. Therefore we get | "i with another 1/2 decrease in intensity (so 1/8
overall).


