B.5 Entanglement

- ¶1. Suppose that \mathcal{H}' and \mathcal{H}'' are the state spaces of two systems. Then $\mathcal{H} = \mathcal{H}' \otimes \mathcal{H}''$ is the state space of the *composite system*.
- ¶2. For simplicity, suppose that both spaces have the basis $\{|0\rangle, |1\rangle\}$. Then $\mathcal{H}' \otimes \mathcal{H}''$ has basis $\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$. Recall that $|01\rangle = |0\rangle \otimes |1\rangle$, etc.
- ¶3. Arbitrary elements of $\mathcal{H}' \otimes \mathcal{H}''$ can be written in the form

$$\sum_{j,k=0,1} c_{jk} |jk\rangle = \sum_{j,k=0,1} c_{jk} |j'\rangle \otimes |k''\rangle.$$

- ¶4. Sometimes the state of the composite systems can be written as the tensor product of the states of the subsystems, $|\psi\rangle = |\psi'\rangle \otimes |\psi''\rangle$. Such a state is called a *separable*, *decomposable* or *product state*.
- ¶5. In other cases the state cannot be decomposed, in which case it is called an *entangled state*
- ¶6. Bell entangled state: For an example of an entangled state, consider the *Bell state* Φ^+ , which might arise from a process that produced two particles with opposite spin (but without determining which is which):

$$\beta_{01} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \stackrel{\text{def}}{=} \Phi^+.$$
(III.4)

(The notations β_{01} and Φ^+ are both used.)

Note that the states $|01\rangle$ and $|10\rangle$ both have probability 1/2.

- ¶7. Such a state might arise from a process that emits two particles with opposite spin angular momentum in order to preserve conservation of spin angular momentum.
- ¶8. To show that it's entangled, we need to show that it cannot be decomposed

 $\beta_{01} \stackrel{?}{=} (a_0|0\rangle + a_1|1\rangle) \otimes (b_0|0\rangle + b_1|1\rangle).$

Multiplying out the RHS yields:

 $a_0b_0|00\rangle + a_0b_1|01\rangle + a_1b_0|10\rangle + a_1b_1|11\rangle.$

Therefore we must have $a_0b_0 = 0$ and $a_1b_1 = 0$. But this implies that either $a_0b_1 = 0$ or $a_1b_0 = 0$ (as opposed to $1/\sqrt{2}$), so the decomposition is impossible.

- ¶9. Decomposable state: Consider: $\frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$. Writing out the product $(a_0|0\rangle + a_1|1\rangle) \otimes (b_0|0\rangle + b_1|1\rangle)$ as before, we require $a_0b_0 = a_0b_1 = a_1b_0 = a_1b_1 = \frac{1}{2}$. This is satisfied by $a_0 = a_1 = b_0 = b_1 = \frac{1}{\sqrt{2}}$.
- ¶10. Bell states: In addition to Eq. III.4, the other three Bell states are defined:

$$\beta_{00} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \stackrel{\text{def}}{=} \Psi^+, \qquad \text{(III.5)}$$

$$\beta_{10} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \stackrel{\text{def}}{=} \Psi^{-}, \qquad \text{(III.6)}$$

$$\beta_{11} \stackrel{\text{def}}{=} \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \stackrel{\text{def}}{=} \Phi^{-}.$$
(III.7)

- ¶11. The Ψ states have two identical qubits, the Φ states have opposite. The + superscript indicates they are added, the – that they are sub-tracted.
- ¶12. The general definition is: \square

$$\beta_{xy} = \frac{1}{\sqrt{2}} (|0, y\rangle + (-1)^x |1, \neg y\rangle).$$