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Deutsch has shown [Deutsch 1985] that it is possible to construct reversible quantum
gates for any classically computable function. In fact, it is possible to conceive of a univer-
sal quantum Turing machine [Bernstein and Vazirani 1997]. In this construction we must
assume a sufficient supply of bits that correspond to the tape of a Turing machine.
Knowing that an arbitrary classical function f withm input and k output bits can be im-

plemented on quantum computer, we assume the existence of a quantum gatearray Uf that
implements f . Uf is a m + k bit transformation of the form Uf : |x, yi ! |x, y � f(x)i
where � denotes the bitwise exclusive-OR6. Quantum gate arrays Uf , defined in this way,
are unitary for any function f . To compute f(x) we apply Uf to |xi tensored with k
zores |x, 0i. Since f(x) � f(x) = 0 we have UfUf = I . Graphically the transformation
Uf : |x, yi ! |x, y � f(x)i is depicted as

Uf

|xi

|yi

|xi

|y � f(x)i.

While the T and F gates are complete for combinatorial circuits, they cannot achieve ar-
bitrary quantum state transformations. In order to realize arbitrary unitary transformations7,
single bit rotations need to be included. Barenco et. al. [Barenco et al. 1995] show that
Cnot together with all 1-bit quantum gates is a universal gate set. It suffices to include the
following one-bit transformations✓
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for all 0 � � � 2� together with the Cnot to obtain a universal set of gates. As we shall
see, such non-classical transformations are crucial for exploiting the power of quantum
computers.

5.2 Quantum Parallelism
What happens if Uf is applied to input which is in a superposition? The answer is easy
but powerful: since Uf is a linear transformation, it is applied to all basis vectors in the
superposition simultaneously and will generate a superposition of the results. In this way,
it is possible to compute f(x) for n values of x in a single application of Uf . This effect is
called quantum parallelism.
The power of quantum algorithms comes from taking advantage of quantum parallelism

and entanglement. So most quantum algorithms begin by computing a function of interest
on a superposition of all values as follows. Start with an n-qubit state |00 . . .0i. Apply the

6� is not the direct sum of vectors.
7More precisely, we mean arbitrary unitary transformations up to a constant phase factor. A constant phase shift
of the state has no physical, and therefore no computational, significance.

Figure III.17: Computation of function by quantum gate array [from IQC].

C.5 Quantum parallelism

¶1. Since Uf is linear, if it is applied to a superposition of bit strings, it will
produce a superposition of the results of applying f to them in parallel
(i.e., in the same time it takes to compute it on one vector):
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¶2. For example,
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¶3. The amplitude of a result y will be the sum of the amplitudes of all x
such that y = f(x).

¶4. Quantum parallelism: If we apply Uf to a superposition of all possi-
ble 2m inputs, it will compute a superposition of all the corresponding
outputs in parallel (i.e., in the same time as required for one function
evaluation)!

¶5. The Walsh-Hadamard transformation can be used to produce this su-
perposition of all possible inputs:
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In the last line we are obviously interpreting the bit strings as natural
numbers.

¶6. Hence,
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¶7. A single circuit does all 2m computations simultaneously!

¶8. “Note that since n qubits enable working simultaneously with 2n states,
quantum parallelism circumvents the time/space trade-o↵ of classical
parallelism through its ability to provide an exponential amount of
computational space in a linear amount of physical space.” [IQC]

¶9. If we measure the input bits, we will get a random value, and the state
will be projected into a superposition of the outputs for the inputs we
measured.

¶10. If we measure an output bit, we will get a value probabilistically, and a
superposition of all the inputs that can produce the measured output.

¶11. Neither of the above is especially useful, so most quantum algorithms
transform the state in such a way that the values of interest have a
high probability of being measured.

¶12. The other thing we can do is extract common properties of all values
of f(x).

¶13. Both of these require di↵erent programming techniques than classical
computing.


