

Figure III．22：Quantum circuit for Deutsch algorithm．［fig．from NC］

D Quantum algorithms

D． 1 Deutsch－Jozsa

D．1．a Deutsch algorithm

【1．This is a simplified version of Deutsch＇s original algorithm，which shows how it is possible to extract global information about a function by using quantum parallelism and interference（Fig．III．22）．${ }^{5}$

【2．Suppose we have a function $f: \mathbf{2} \rightarrow \mathbf{2}$ ，as in Sec．C．5．
The goal is to determine whether $f(0)=f(1)$ with a single function evaluation．This is not a very interesting problem（since there are only four such functions），but it is a warmup for the Deutsch－Jozsa algorithm．

【3．It could be expensive to decide on a classical computer．For example， suppose $f(0)=$ the millionth digit of π and $f(1)=$ the millionth digit of e ．Then the problem is to decide if the millionth digits of π and e are the same．
It is mathematically simple，but computationally complex．
【4．Initial state：Begin with the qubits $\left|\psi_{0}\right\rangle=|01\rangle$ ．

[^0]T5．Superposition：Transform it to a pair of superpositions

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|+-\rangle . \tag{III.21}
\end{equation*}
$$

by two tensored Hadamard gates．
Recall $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle$ and $H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle$ ．
【6．Function application：Next apply U_{f} to $\left|\psi_{1}\right\rangle=|+-\rangle$ ．
47．Note $U_{f}|x\rangle|0\rangle=|x\rangle|0 \oplus f(x)\rangle=|x\rangle|f(x)\rangle$ ．
【8．Also note $U_{f}|x\rangle|1\rangle=|x\rangle|1 \oplus f(x)\rangle=|x\rangle|\neg f(x)\rangle$ ．
【9．Therefore，expand Eq．III． 21 and apply U_{f} ：

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =U_{f}\left|\psi_{1}\right\rangle \\
& =U_{f}\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right] \\
& =\frac{1}{2}\left[U_{f}|00\rangle-U_{f}|01\rangle+U_{f}|10\rangle-U_{f}|11\rangle\right] \\
& =\frac{1}{2}[|0, f(0)\rangle-|0, \neg f(0)\rangle+|1, f(1)\rangle-|1, \neg f(1)\rangle]
\end{aligned}
$$

There are two cases：$f(0)=f(1)$ and $f(0) \neq f(1)$ ．
【10．Equal（constant function）：If $f(0)=f(1)$ ，then

The last line applies because global phase（including \pm ）doesn＇t matter．

【11．Unequal（balanced function）：If $f(0) \neq f(1)$ ，then

Clearly we can discriminate between the two cases by measuring the first qubit in the sign basis．

912．Measurement：Therefore we can determine whether $f(0)=f(1)$ or not by measuring the first bit of $\left|\psi_{2}\right\rangle$ in the sign basis，which we can do with the Hadamard gate（recall $H|+\rangle=|0\rangle$ and $H|-\rangle=|1\rangle$ ）：

$$
\begin{aligned}
\left|\psi_{3}\right\rangle & =(H \otimes I)\left|\psi_{2}\right\rangle \\
& = \begin{cases} \pm|0\rangle|-\rangle, & \text { if } f(0)=f(1) \\
\pm|1\rangle|-\rangle, & \text { if } f(0) \neq f(1)\end{cases} \\
& = \pm|f(0) \oplus f(1)\rangle|-\rangle .
\end{aligned}
$$

413．Therefore we can determine whether or not $f(0)=f(1)$ with a single evaluation of f ．
（This is very strange！）
【14．In effect，we are evaluating f on a superposition of $|0\rangle$ and $|1\rangle$ and determining how the results interfere with each other．As a result we get a definite（not probabilistic）determination of a global property with a single evaluation．

【15．This is a clear example where a quantum computer can do something faster than a classical computer．

916．However，note that U_{f} has to uncompute f ，which takes as much time as computing it，but we will see other cases（Deutsch－Jozsa）where the speedup is much more than $2 \times$ ．

Figure III．23：Quantum circuit for Deutsch－Jozsa algorithm．［fig．from NC］

D．1．b Deutsch－Jozsa ALGORIthm

【1．The Deutsch－Jozsa algorithm is a generalization of the Deutsch algo－ rithm to n bits；they published it in 1992；this is an improved version ［NC 59］．

【2．The problem：Suppose we are given an unknown function $f: \mathbf{2}^{n} \rightarrow \mathbf{2}$ in the form of a unitary transform $U_{f} \in \mathcal{L}\left(\mathcal{H}^{n+1}, \mathcal{H}\right)$（Fig．III．23）．

【3．We are told only that f is either constant or balanced，which means that it is 0 on half its domain and 1 on the other half．Our task is to determine into which class a given f falls．

【4．Classical：Consider first the classical situation．We can try different input bit strings \mathbf{x} ．
We might（if we＇re lucky）discover after the second query of f that it is not constant．
But we might require as many as $2^{n} / 2+1$ queries to answer the question． So we＇re facing $\mathcal{O}\left(2^{n-1}\right)$ function evaluations．

45．Initial state：As in the Deutsch algorithm，prepare the initial state $\left|\psi_{0}\right\rangle=|0\rangle^{\otimes n}|1\rangle$ ．

【6．Superposition：Use the Walsh－Hadamard transformation to create a
superposition of all possible inputs：

$$
\left|\psi_{1}\right\rangle=\left(H^{\otimes n} \otimes H\right)\left|\psi_{0}\right\rangle=\sum_{\mathbf{x} \in \mathbf{2}^{n}} \frac{1}{\sqrt{2^{n}}}|\mathbf{x},-\rangle .
$$

97．Claim：We will show that $U_{f}|\mathbf{x},-\rangle=(-)^{f(\mathbf{x})}|\mathbf{x}\rangle|-\rangle$ ，where $(-)^{n}$ is an abbreviation for $(-1)^{n}$ ．
ब8．Hence $U_{f}|\mathbf{x},-\rangle=|\mathbf{x}\rangle \frac{1}{\sqrt{2}}(|f(\mathbf{x})\rangle-|\neg f(\mathbf{x})\rangle)$ ．
【9．Since $f(\mathbf{x}) \in \mathbf{2}, \frac{1}{\sqrt{2}}(|f(\mathbf{x})\rangle-|\neg f(\mathbf{x})\rangle)=|-\rangle$ if $f(\mathbf{x})=0$ ，and it $=-|-\rangle$ if $f(\mathbf{x})=1$ ．
This establishes the claim．
910．Function application：Since $U_{f}|\mathbf{x}, y\rangle=|\mathbf{x}, y \oplus f(x)\rangle$ ，you can see that：

$$
\left|\psi_{2}\right\rangle=\sum_{\mathbf{x} \in \mathbf{2}^{n}} \frac{1}{\sqrt{2^{n}}}(-)^{f(\mathbf{x})}|\mathbf{x},-\rangle
$$

911．The top n lines contain a superposition of the 2^{n} simultaneous eval－ uations of f ．To see how we can make use of this information，let＇s consider their state in more detail．

【12．For a single bit you can show（exercise！）：

$$
H|x\rangle=\sum_{z \in \mathbf{2}} \frac{1}{\sqrt{2}}(-)^{x z}|z\rangle
$$

（This is just another way of writing $H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$ and $H|1\rangle=$ $\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$ ．）
【13．Therefore，for the n bits：

$$
\begin{align*}
H^{\otimes n}\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle & =\frac{1}{\sqrt{2^{n}}} \sum_{z_{1}, \ldots, z_{n} \in \mathbf{2}}(-)^{x_{1} z_{1}+\cdots+x_{n} z_{n}}\left|z_{1}, z_{2}, \ldots, z_{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{z} \in \mathbf{2}^{n}}(-)^{\mathbf{x} \cdot \mathbf{z}}|\mathbf{z}\rangle, \tag{III.22}
\end{align*}
$$

where $\mathbf{x} \cdot \mathbf{z}$ is the bitwise inner product．（It doesn＇t matter if you do addition or \oplus since only the parity of the result is significant．）
Remember this formula！

【14．Combining this and the result in $\boldsymbol{\top} 10$ ，

$$
\left|\psi_{3}\right\rangle=\left(H^{\otimes n} \otimes I\right)\left|\psi_{2}\right\rangle=\sum_{\mathbf{z} \in \mathbf{2}^{n}} \sum_{\mathbf{x} \in \mathbf{2}^{n}} \frac{1}{2^{n}}(-)^{\mathbf{x} \cdot \mathbf{z}+f(\mathbf{x})}|\mathbf{z}\rangle|-\rangle .
$$

915．Measurement：Consider the first n qubits and the amplitude of one particular basis state， $\mathbf{z}=|0\rangle^{\otimes n}$ ． Its amplitude is $\sum_{\mathbf{x} \in \mathbf{2}^{n}} \frac{1}{2^{n}}(-)^{f(\mathbf{x})}$ ．

916．Constant function：If the function is constant，then all the exponents of -1 will be the same（either all 0 or all 1 ），and so the amplitude will be ± 1 ．
Therefore all the other amplitudes are 0 and any measurement must yield 0 for all the bits（since only $|0\rangle^{\otimes n}$ has nonzero amplitude）．

917．Balanced function：If the function is not constant then（ex hypothesi） it is balanced．
But more specifically，if it is balanced，then there must be an equal number of +1 and -1 contributions to the amplitude of $|0\rangle^{\otimes n}$ ，so its amplitude is 0 ．
Therefore，when we measure the state，at least one qubit must be nonzero（since the all－0s state has amplitude 0 ）．

918．Good and bad news：The good news is that with one quantum function evaluation we have got a result that would require between 2 and $\mathcal{O}\left(2^{n-1}\right)$ classical function evaluations（exponential speedup）．
The bad news is that the algorithm has no known applications！
【19．Even if it were useful，the problem could be solved probabilistically on a classical computer with only a few evaluations of f ．

【20．However，it illustrates principles of quantum computing that can be used in more useful algorithms．

[^0]: ${ }^{5}$ This is the 1998 improvement by Cleve et al．to Deutsch＇s 1985 algorithm［NC 59］．

