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CHAPTER III. QUANTUM COMPUTATION

D.2 Simon

Simon’s algorithm was presented in Simon, D. (1997), “On the power of
quantum computation,” SIAM Journ. Computing, 26 (5), pp. 1474-83. This
presentation follows Mermin’s Quantum Computer Science, §2.5 (pp. 55-8)

[MQCS].
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For breaking RSA we will see that its useful to know the period of a
function: that p such that f(z + p) = f(z). Simon’s problem is a
warmup for this.

Simon’s Problem: Suppose we are given an unknown function f :
2" — 2™ and we are told that it is two-to-one.

This means f(x) = f(y) iff x @ y = p for some fixed p € 2".

The vector p can be considered the period of f, since f(x®p) = f(x).

The problem is to determine the period p of an unknown f.

Classical solution: Since we don’t know anything about f, the best
we can do is evaluate it on random inputs.

If we are ever lucky enough to find x and x’ such that f(x) = f(x'),
then we have our answer, p = x @ x'.

On the average you need to do 2*/? function evaluations, which is ex-
ponential in the size of the input.

For n = 100, it would require about 2°° ~ 10'® evaluations. “At 10
million calls per second it would take about three years.” [MQCS 55]

Quantum algorithm: We will see that a quantum computer can
determine p with high probability (> 1—107%) in about 120 evaluations.
At 10 million calls per second, this would take about 12 microseconds!

Input superposition: As before, start by using the Walsh-Hadamard
transform to create a superposition of all possible inputs:

def ®n
o) & HEn)n = Z [x)-
xe2m

Function evaluation: Suppose that Uy is the quantum gate array
implementing f and recall Uf|x)|y) = |x)|y @ f(x)). Therefore:

[1h2) < Uyplin)|0)® WZl ) f(x

xe2n
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Therefore we have an equal superposition of corresponding input-output
values.

Output measurement: Measure the output register to obtain some
|z).

Since the function is two-to-one, the projection will have a superposi-
tion of two inputs:

1
E(IX& + %o+ p))lz),

where f(x9) =2z = f(x0+ p).
The information we need is contained in the input register,

def 1
|13) = E(‘X@ + |x0 +P)),

but it cannot be extracted directly.

If we measure it, we will get either xy or xo + p, but not both, and we
need both to get p.

(We cannot make two copies, due to the no-cloning theorem.)

Suppose we apply the Walsh-Hadamard transform to this superposi-
tion:
1

H"|¢ps) = H®"E(|X0> +[x0+p))

1
= —=(H""[x0) + H*"|x0 + P))-

V2

Now, recall (13, p. 112) that H®"|x) = 5z > en(—1)*Y|y). There-
fore,

" 1 1 <o 1 o).
H) = —5 |5 D (U9 + 50 3 (F)0 " y)
ye2n ye2n
1 X0* X
= S Z [(_1) 0V 4 (—1)00tP) y] ly).
ye2an

Note that (—1)C0FP)1Y = (—1)%0¥(—1)PY,
Therefore, if p -y = 1, then the bracketed expression is 0 (since the
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terms have opposite sign and cancel).
However, if p-y = 0, then the bracketed expression is 2(—1)*0¥ (since
they don’t cancel).

Hence the result of the Walsh-Hadamard transform is

1
[Va) = H" ) = 5y D (Z7ly).

py=0

Measurement: Measuring the input register will collapse it with equal
probability into a state [y(!)) such that p - y* = 0.

First equation: Since we know y), this gives us some information
about p, expressed in the equation:

v+ s+ -+ yWp, =0 (mod 2).

Iteration: The quantum computation can be repeated, producing a
series of bit strings y,y®, ... such that y*) . p = 0.

From them we can build up a system of n linearly-independent equa-
tions and solve for p.

(If you get a linearly-dependent equation, you have to try again.)

Note that each quantum step (involving one evaluation of f) produces
an equation (except in the unlikely case y*) = 0 or that it’s linearly
dep.), and therefore determines one of the bits in terms of the other
bits.

That is, each iteration reduced the candidates for p by approximately
one-half.

Probability: A mathematical analysis [MQCS App. G] shows that
with n + m iterations the probability of having enough information to
determine p is > 1 — g7

“Thus the odds are more than a million to one that with n+ 20 invoca-
tions of Uy we will learn [p], no matter how large n may be.” [MQCS
57]

Exponential speedup: Therefore Simon’s problem can be solved in
linear time on a quantum computer, but requires exponential time on
a classical computer.



