

Figure IV．7：Graph G_{2} for Lipton＇s algorithm（with two variables，x and y ）． ［source：Lipton（1995）］

B． 2 Lipton：SAT

This lecture is based on Richard J．Lipton（1995），＂DNA solution of hard computational problems，＂Science 268：542－5．

B．2．a Review of SAT problem

【1．Boolean satisfiability：The first problem proved to be NP－complete．
【2．Use conjunctive normal form with n variables and m clauses．

B．2．b Data representation

【1．Solutions：Solutions are n－bit binary strings．
【2．These are thought of as paths through a particular graph G_{n}（see Fig． IV．7）．
For vertices $a_{k}, x_{k}, x_{k}^{\prime}, k=1, \ldots, n$ ，and a_{n+1} ， there are edges from a_{k} to x_{k} and x_{k}^{\prime} ， and from x_{k} and x_{k}^{\prime} to a_{k+1} ．

【3．Binary strings are represented by paths from a_{1} to a_{n+1} ．
A path through x_{k} encodes the assignment $x_{k}=1$ and through x_{k}^{\prime} encodes $x_{k}=0$ ．

【4．The DNA encoding is essentially the same as in Adleman＇s algorithm．

B．2．c Algorithm

【1．Suppose we have an instance（formula）to be solved：
$I=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ ．
【2．Step 1 （initialization）：Create a test tube of all possible n－bit binary strings，encoded as above．
Call this test tube T_{0} ．
93．Step 2 （clause satisfaction）：For each clause $C_{k}, k=1, \ldots, m$ ：
Extract from T_{k-1} only those strings that satisfy C_{k} ，and put them in T_{k} ．
The goal is that for every string $\forall x \in T_{k} \forall 1 \leq j \leq k: C_{j}(x)=1$ ．
This is done as follows．
44．Extract operation：Let $E(T, i, a)$ be the operation that extracts from test tube T all（or most）of the strings whose i th bit is a ．

45．For $k=0, \ldots, m-1$ ：
Precondition：The strings in T_{k} satisfy clauses C_{1}, \ldots, C_{k} ．
Let $\ell=\left|C_{k}\right|$ ，and suppose C_{k+1} has the form $v_{1} \vee \cdots \vee v_{\ell}$ ，where the v_{i} are literals（plain or complemented variables）．
Let $\bar{T}_{k}^{0}=T_{k}$ ．
Do the following for literals $i=1, \ldots, \ell$ ．
【6．Positive literal：Suppose $v_{i}=x_{j}$（some positive literal）．
Let $T_{k}^{i}=E\left(\bar{T}_{k}^{i-1}, j, 1\right)$ ．
These are the paths that satisfy this positive literal．
47．Negative literal：Suppose $v_{i}=x_{j}^{\prime}$（some negative literal）．
Let $T_{k}^{i}=E\left(\bar{T}_{k}^{i-1}, j, 0\right)$ ．
These are the paths that satisfy this negative literal．
48．In either case，T_{k}^{i} are the strings that satisfy literal i ．
Let $\bar{T}_{k}^{i}=E\left(\bar{T}_{k}^{i-1}, j, \neg a\right)$ be the remaining strings（which do not satisfy this literal）．
Continue until all literals are processed．
『9．Combine $T_{k}^{1}, \ldots, T_{k}^{\ell}$ into T_{k+1} ．
Postcondition：The strings in T_{k+1} satisfy clauses C_{1}, \ldots, C_{k+1} ．

【10．Step 3 （detection）：At this point，the strings in T_{m} satisfy C_{1}, \ldots, C_{m} ， so do a detect operation to see if there are any strings left．
If there are，the formula is satisfiable；if not，not．
【11．Performance：If the number of literals is fixed（as in 3SAT），then performance is linear in m ．

【12．Errors：The main problem is the effect of errors．But imperfections in extraction are not fatal，so long as there are enough copies of the desired sequence．

