230

CHAPTER IV. MOLECULAR COMPUTATION

B.3 Test tube programming language

qL.

.

Test Tube Programming Language (TTPL): These ideas can be
extended to a Test Tube Programming Language (TTPL).

Developed in the mid 90s by Lipton and Adleman.

B.3.a Basic OPERATIONS

q1.

Q.
qs.

9.

95.

16.

q7.

DNA algorithms operate on “test tubes,” which are multi-sets of strings
over X = {A, C, T, G}.

There are four basic operations (all implementable):

Extract (or separate): There are two complementary extraction (or
separation) operations.

Given a test tube ¢ and a string w, +(¢, w) returns all strings in ¢ that
have w as a subsequence:

Htw) s et|TuveT s =uwv}

Likewise, —(¢,w) returns a test tube of all the remaining strings:

—(t,w) ey — +(t,w) (multi-set difference).

Merge: The merge operation combines several test tubes into one test
tube:
def
U(tl,tg,...,tn> - tl Utz U--- Utn
Detect: The detect operation determines if any DNA strings remain
in a test tube:

def { true, ift#(

detect(t) = false, otherwise °

Amplify: Given a test tube ¢, the amplify operation produces two
copies of it: ', t" < amplify(¢).

Restricted model: Amplification is a problematic operation, which
depends on the special properties of DNA and RNA.

Also it may be error prone.

Therefore it is useful to consider a restricted model of DNA computing
that avoids or minimizes the use of amplification.

B. FILTERING MODELS 231

€8. The following additional operations have been proposed:

99. Length-separate: Produces a test tube containing all the strands less
than a specified length:

t,<n) L {set]||s| <n}

910. Position-separate: There are two position-separation operations, one
that selects for strings that begin with a given sequence, and one for
sequences that end with it:

B(t,w) o {set| el :s=uwv},
E(t,w) o {set|Jued:s=uw}.

B.3.b EXAMPLES

1. ANIC: The following example algorithm detects if there are any se-
quences that contain only C:

procedure [out] = AlIC(t, A, T, G)

t < —(t, A)
t < —(t, T)
t < —(t, G)

out «— detect (t)
end procedure

€2. HPP: Adelman’s solution of the HPP can be expressed in TTPL:

procedure [out] = HPP(t, vin, vout)

t < B(t, vin) //begin with vin
t < E(t, vout) //end with vout
t < (t, < 140) //correct length
for i=1 to 5 do

t « +(t, si]) //contain vertex i
end for
out < detect(t) //any HP left?

end procedure

232 CHAPTER IV. MOLECULAR COMPUTATION

3. SAT: Programming Lipton’s solution to SAT requires another prim-
itive operation, which extracts all sequences for which the jth bit is
a€2: Etja).

Recall that these are represented by the sequences z; and x; Therefore:

E<t7j71) = —f—(t,[L‘j)’
E(t,j,0) = +(t,a).

L]

94. procedure [out] = SAT(t)

for k = 1 to m do // for each clause
for i =1tondo // for each literal
if C[k][i] = z; // i-th literal in clause k

then t[i| « E(t,j,1)
else t[i] «+ E(t,j,0)
end if
end for
t < U(t[1], t[2], ..., t[n]) // solutions for clauses 1..k
end for
out < detect(t)
end procedure

