
230 CHAPTER IV. MOLECULAR COMPUTATION

B.3 Test tube programming language

¶1. Test Tube Programming Language (TTPL): These ideas can be
extended to a Test Tube Programming Language (TTPL).

¶2. Developed in the mid 90s by Lipton and Adleman.

B.3.a Basic Operations

¶1. DNA algorithms operate on “test tubes,” which are multi-sets of strings
over ⌃ = {A, C, T, G}.

¶2. There are four basic operations (all implementable):

¶3. Extract (or separate): There are two complementary extraction (or
separation) operations.
Given a test tube t and a string w, +(t, w) returns all strings in t that
have w as a subsequence:

+(t, w)
def

= {s 2 t | 9u, v 2 ⌃⇤ : s = uwv}.
Likewise, �(t, w) returns a test tube of all the remaining strings:

�(t, w) def

= t � +(t, w) (multi-set di↵erence).

¶4. Merge: The merge operation combines several test tubes into one test
tube:

[(t
1

, t

2

, . . . , tn)
def

= t

1

[t

2

[· · · [tn.

¶5. Detect: The detect operation determines if any DNA strings remain
in a test tube:

detect(t)
def

=

⇢
true, if t 6= ;
false, otherwise

.

¶6. Amplify: Given a test tube t, the amplify operation produces two
copies of it: t0, t00 amplify(t).

¶7. Restricted model: Amplification is a problematic operation, which
depends on the special properties of DNA and RNA.
Also it may be error prone.
Therefore it is useful to consider a restricted model of DNA computing
that avoids or minimizes the use of amplification.

B. FILTERING MODELS 231

¶8. The following additional operations have been proposed:

¶9. Length-separate: Produces a test tube containing all the strands less
than a specified length:

(t, n)
def

= {s 2 t | |s| n}.

¶10. Position-separate: There are two position-separation operations, one
that selects for strings that begin with a given sequence, and one for
sequences that end with it:

B(t, w)
def

= {s 2 t | 9v 2 ⌃⇤ : s = wv},
E(t, w)

def

= {s 2 t | 9u 2 ⌃⇤ : s = uw}.

B.3.b Examples

¶1. AllC: The following example algorithm detects if there are any se-
quences that contain only C:

procedure [out] = AllC(t, A, T, G)
t –(t, A)
t –(t, T)
t –(t, G)
out detect (t)

end procedure

¶2. HPP: Adelman’s solution of the HPP can be expressed in TTPL:

procedure [out] = HPP(t, vin, vout)
t B(t, vin) //begin with vin
t E(t, vout) //end with vout
t (t, 140) //correct length
for i=1 to 5 do
t +(t, s[i]) //contain vertex i

end for
out detect(t) //any HP left?

end procedure

232 CHAPTER IV. MOLECULAR COMPUTATION

¶3. SAT: Programming Lipton’s solution to Sat requires another prim-
itive operation, which extracts all sequences for which the jth bit is
a 2 2: E(t, j, a).
Recall that these are represented by the sequences xj and x

0
j. Therefore:

E(t, j, 1) = +(t, xj),

E(t, j, 0) = +(t, x0
j).

¶4. procedure [out] = Sat(t)
for k = 1 to m do // for each clause
for i = 1 to n do // for each literal
if C[k][i] = xj // i-th literal in clause k
then t[i] E(t,j,1)
else t[i] E(t,j,0)

end if
end for
t [(t[1], t[2], . . . , t[n]) // solutions for clauses 1..k

end for
out detect(t)

end procedure

