B． 3 Test tube programming language

【1．Test Tube Programming Language（TTPL）：These ideas can be extended to a Test Tube Programming Language（TTPL）．
【2．Developed in the mid 90s by Lipton and Adleman．

B．3．a Basic Operations

【1．DNA algorithms operate on＂test tubes，＂which are multi－sets of strings over $\Sigma=\{\mathrm{A}, \mathrm{C}, \mathrm{T}, \mathrm{G}\}$ ．

【2．There are four basic operations（all implementable）：
【3．Extract（or separate）：There are two complementary extraction（or separation）operations．
Given a test tube t and a string $w,+(t, w)$ returns all strings in t that have w as a subsequence：

$$
+(t, w) \stackrel{\text { def }}{=}\left\{s \in t \mid \exists u, v \in \Sigma^{*}: s=u w v\right\}
$$

Likewise，$-(t, w)$ returns a test tube of all the remaining strings：

$$
-(t, w) \stackrel{\text { def }}{=} t-+(t, w) \quad \text { (multi-set difference). }
$$

【4．Merge：The merge operation combines several test tubes into one test tube：

$$
\cup\left(t_{1}, t_{2}, \ldots, t_{n}\right) \stackrel{\text { def }}{=} t_{1} \cup t_{2} \cup \cdots \cup t_{n}
$$

【5．Detect：The detect operation determines if any DNA strings remain in a test tube：

$$
\operatorname{detect}(t) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}
\text { true, } & \text { if } t \neq \emptyset \\
\text { false, } & \text { otherwise }
\end{array} .\right.
$$

【6．Amplify：Given a test tube t ，the amplify operation produces two copies of it：$t^{\prime}, t^{\prime \prime} \leftarrow \operatorname{amplify}(t)$ ．

97．Restricted model：Amplification is a problematic operation，which depends on the special properties of DNA and RNA．
Also it may be error prone．
Therefore it is useful to consider a restricted model of DNA computing that avoids or minimizes the use of amplification．

48．The following additional operations have been proposed：
【9．Length－separate：Produces a test tube containing all the strands less than a specified length：

$$
(t, \leq n) \stackrel{\text { def }}{=}\{s \in t||s| \leq n\}
$$

【10．Position－separate：There are two position－separation operations，one that selects for strings that begin with a given sequence，and one for sequences that end with it：

$$
\begin{aligned}
& B(t, w) \stackrel{\text { def }}{=}\left\{s \in t \mid \exists v \in \Sigma^{*}: s=w v\right\} \\
& E(t, w) \stackrel{\text { def }}{=}\left\{s \in t \mid \exists u \in \Sigma^{*}: s=u w\right\}
\end{aligned}
$$

B．3．b ExAMPLES

【1．AllC：The following example algorithm detects if there are any se－ quences that contain only C ：

```
procedure \([\) out \(]=\operatorname{AllC}(\mathrm{t}, \mathrm{A}, \mathrm{T}, \mathrm{G})\)
    \(\mathrm{t} \leftarrow-(\mathrm{t}, \mathrm{A})\)
    \(\mathrm{t} \leftarrow-(\mathrm{t}, \mathrm{T})\)
    \(\mathrm{t} \leftarrow-(\mathrm{t}, \mathrm{G})\)
    out \(\leftarrow \operatorname{detect}(\mathrm{t})\)
end procedure
```

T2．HPP：Adelman＇s solution of the HPP can be expressed in TTPL：
procedure $[$ out $]=\operatorname{HPP}(\mathrm{t}$ ，vin，vout $)$
$\mathrm{t} \leftarrow \mathrm{B}(\mathrm{t}$, vin $) \quad / /$ begin with vin
$\mathrm{t} \leftarrow \mathrm{E}(\mathrm{t}$, vout $) \quad / /$ end with vout
$\mathrm{t} \leftarrow(\mathrm{t}, \leq 140) \quad / /$ correct length
for $\mathrm{i}=1$ to 5 do
$\mathrm{t} \leftarrow+(\mathrm{t}, \mathrm{s}[\mathrm{i}]) \quad / /$ contain vertex i
end for
out $\leftarrow \operatorname{detect}(\mathrm{t}) \quad / /$ any HP left？
end procedure
43. SAT: Programming Lipton's solution to Sat requires another primitive operation, which extracts all sequences for which the j th bit is $a \in \mathbf{2}: E(t, j, a)$.
Recall that these are represented by the sequences x_{j} and x_{j}^{\prime}. Therefore:

$$
\begin{aligned}
& E(t, j, 1)=+\left(t, x_{j}\right) \\
& E(t, j, 0)=+\left(t, x_{j}^{\prime}\right)
\end{aligned}
$$

94. procedure [out] $=\operatorname{SAT}(\mathrm{t})$
for $\mathrm{k}=1$ to m do // for each clause
for $\mathrm{i}=1$ to n do // for each literal
if $\mathrm{C}[\mathrm{k}][\mathrm{i}]=x_{j} \quad / /$ i-th literal in clause k
then $\mathrm{t}[\mathrm{i}] \leftarrow \mathrm{E}(\mathrm{t}, \mathrm{j}, 1)$
else $\mathrm{t}[\mathrm{i}] \leftarrow \mathrm{E}(\mathrm{t}, \mathrm{j}, 0)$
end if
end for
$\mathrm{t} \leftarrow \cup(\mathrm{t}[1], \mathrm{t}[2], \ldots, \mathrm{t}[\mathrm{n}]) / /$ solutions for clauses $1 . . \mathrm{k}$
end for
out $\leftarrow \operatorname{detect}(\mathrm{t})$
end procedure
