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CHAPTER IV. MOLECULAR COMPUTATION

B.3 Test tube programming language

qL.

.

Test Tube Programming Language (TTPL): These ideas can be
extended to a Test Tube Programming Language (TTPL).

Developed in the mid 90s by Lipton and Adleman.

B.3.a Basic OPERATIONS
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DNA algorithms operate on “test tubes,” which are multi-sets of strings
over X = {A, C, T, G}.

There are four basic operations (all implementable):

Extract (or separate): There are two complementary extraction (or
separation) operations.

Given a test tube ¢ and a string w, +(¢, w) returns all strings in ¢ that
have w as a subsequence:

Htw) s et|TuveT s =uwv}

Likewise, —(¢,w) returns a test tube of all the remaining strings:

—(t,w) ey — +(t,w) (multi-set difference).

Merge: The merge operation combines several test tubes into one test
tube:
def
U(tl,tg,...,tn> - tl Utz U--- Utn
Detect: The detect operation determines if any DNA strings remain
in a test tube:

def { true, ift#(

detect(t) = false, otherwise °

Amplify: Given a test tube ¢, the amplify operation produces two
copies of it: ', t" < amplify(¢).

Restricted model: Amplification is a problematic operation, which
depends on the special properties of DNA and RNA.

Also it may be error prone.

Therefore it is useful to consider a restricted model of DNA computing
that avoids or minimizes the use of amplification.
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€8. The following additional operations have been proposed:

99. Length-separate: Produces a test tube containing all the strands less
than a specified length:

t,<n) L {set]||s| <n}

910. Position-separate: There are two position-separation operations, one
that selects for strings that begin with a given sequence, and one for
sequences that end with it:

B(t,w) o {set| el :s=uwv},
E(t,w) o {set|Jued:s=uw}.

B.3.b EXAMPLES

1. ANIC: The following example algorithm detects if there are any se-
quences that contain only C:

procedure [out] = AlIC(t, A, T, G)

t < —(t, A)
t < —(t, T)
t < —(t, G)

out «— detect (t)
end procedure

€2. HPP: Adelman’s solution of the HPP can be expressed in TTPL:

procedure [out] = HPP(t, vin, vout)

t < B(t, vin) //begin with vin
t < E(t, vout) //end with vout
t < (t, < 140) //correct length
for i=1 to 5 do

t « +(t, si]) //contain vertex i
end for
out < detect(t) //any HP left?

end procedure
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3. SAT: Programming Lipton’s solution to SAT requires another prim-
itive operation, which extracts all sequences for which the jth bit is
a€2: Etja).

Recall that these are represented by the sequences z; and x; Therefore:

E<t7j71) = —f—(t,[L‘j)’
E(t,j,0) = +(t,a).

L]

94. procedure [out] = SAT(t)

for k = 1 to m do // for each clause
for i =1tondo // for each literal
if C[k][i] = z; // i-th literal in clause k

then t[i| « E(t,j,1)
else t[i] «+ E(t,j,0)
end if
end for
t < U(t[1], t[2], ..., t[n]) // solutions for clauses 1..k
end for
out < detect(t)
end procedure



