B. FILTERING MODELS

B.4 Parallel filtering model

- **¶1.** The *parallel filtering model* was developed in the mid 90s by Martyn Amos and colleagues to be a means of describing DNA alfgorithms for any NP problem (as opposed to Ableson and Lipton, which are specialized to particular problems).
- ¶2. "Our choice is determined by what we know can be effectively implemented by very precise and complete chemical reactions within the DNA implementation."⁶
- ¶3. All PFM algorithms begin with a multi-set of all candidate solutions.
- ¶4. Mark and destroy: The PFM differs from others in that removed strings are discarded and cannot be used in further operations. Therefore is is a "mark and destroy" approach to DNA computation.
- B.4.a BASIC OPERATIONS
 - ¶1. The basic operations are *remove*, *union*, *copy*, and *select*.
 - ¶2. Remove: The operation remove $(U, \{S_1, \ldots, S_n\})$ removes from U any strings that contain any of the substrings S_i .
 - **¶**3. Remove is implemented by two primitive operations, *mark* and *destroy*:
 - ¶4. mark: mark(U, S) marks all strands that have S as a substring. This is done by adding \overline{S} as a primer with polymerase to make it double-stranded.
 - ¶5. **destroy:** destroy(U) removes all the marked sequences from U. This is done by adding a restriction enzyme that cuts up the doublestranded part. These fragments can be removed by gel electrophoresis, or left in the solution (since they won't affect it).
 - **(**6. Restriction enzymes are much more reliable than other DNA operations, which is one advantage of the PFM approach.

⁶Amos, p. 50.

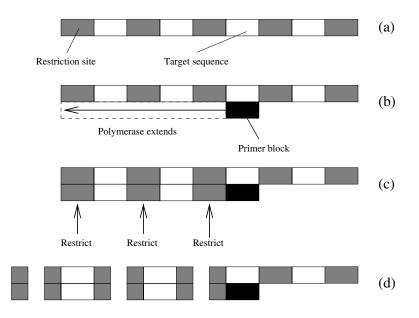


Figure IV.8: *Remove* operation implemented by *mark* and *destroy*. [source: Amos]

- ¶7. Union: The operation union($\{U_1, \ldots, U_n\}, U$) combines in parallel the multi-sets U_1, \ldots, U_n into U.
- ¶8. Copy: The operation $copy(U, \{U_1, \ldots, U_n\})$ divides multi-set U into n equal multi-sets U_1, \ldots, U_n .
- ¶9. Select: The operation select(U) returns a random element of U. If $U = \emptyset$, then it returns \emptyset .
- ¶10. Homogeneous DNA can be detected and sequenced by PCR. Nested PCR can be used in non-homogeneous cases (multiple solutions).
- ¶11. These operations are assumed to be constant-time.
- ¶12. Periodic amplification (especially after copy operations) may be necessary to ensure an adequate number of instances.
- ¶13. Amos et al. have done a number of experiments to determine optimum reactions parameters and procedures.

B.4.b PERMUTATIONS

- ¶1. Input: "The input set U consists of all strings of the form $p_1i_1p_2i_2\cdots p_ni_n$ where, for all j, p_j uniquely encodes 'position j' and each i_j is in $\{1, 2, \ldots, n\}$. Thus each string consists of n integers with (possibly) many occurrences of the same integer."⁷
- ¶2. for j = 1 to n 1 do $\operatorname{copy}(U, \{U_1, U_2, \dots, U_n\})$ for $i = 1, 2, \dots, n$ and all k > jin parallel do $\operatorname{remove}(U_i, \{p_j i_j \neq p_j i, p_k i\})$ $// U_i$ contains i in jth position and no other is $\operatorname{union}(\{U_1, U_2, \dots, U_n\}, U)$ end for $P_n \leftarrow U$
- ¶3. In the preceding, remove $(U_i, \{p_j i_j \neq p_j i, p_k i\})$ means to remove from U_i all strings that have a p_j value not equal to i and all strings containing $p_k i$ for any k > j.

For example, if i = 2 and j = n - 1, this remove operation translates to remove $(U_2, \{p_{n-1}1, p_{n-1}3, p_{n-1}4, \dots, p_{n-1}n, p_n2\})$.

That is, it eliminates all strings except those with 2 in the n-1 position, and eliminates those with 2 in the n position.

¶4. At the end of iteration j we have:

$$\underbrace{p_1 i_1 p_2 i_2 \cdots p_j i_j}_{\beta} \underbrace{p_{j+1} i_{j+1} \cdots p_n i_n}_{\beta}$$

where α represents a permutation of j integers from $1, \ldots, n$, and none of these integers i_1, \ldots, i_j are in β .

¶5. NP-complete problems: Amos shows how to do a number of NPcomplete problems, including 3-vertex-colorability, HPP, subgraph isomorphism, and maximum clique.

⁷Amos, p. 51.