
B. FILTERING MODELS 233

B.4 Parallel filtering model

¶1. The parallel filtering model was developed in the mid 90s by Martyn
Amos and colleagues to be a means of describing DNA alfgorithms
for any NP problem (as opposed to Ableson and Lipton, which are
specialized to particular problems).

¶2. “Our choice is determined by what we know can be e↵ectively imple-
mented by very precise and complete chemical reactions within the
DNA implementation.”6

¶3. All PFM algorithms begin with a multi-set of all candidate solutions.

¶4. Mark and destroy: The PFM di↵ers from others in that removed
strings are discarded and cannot be used in further operations.
Therefore is is a “mark and destroy” approach to DNA computation.

B.4.a Basic operations

¶1. The basic operations are remove, union, copy, and select.

¶2. Remove: The operation remove(U, {S
1

, . . . , Sn}) removes from U any
strings that contain any of the substrings Si.

¶3. Remove is implemented by two primitive operations, mark and destroy:

¶4. mark: mark(U, S) marks all strands that have S as a substring.
This is done by adding S as a primer with polymerase to make it
double-stranded.

¶5. destroy: destroy(U) removes all the marked sequences from U .
This is done by adding a restriction enzyme that cuts up the double-
stranded part.
These fragments can be removed by gel electrophoresis, or left in the
solution (since they won’t a↵ect it).

¶6. Restriction enzymes are much more reliable than other DNA opera-
tions, which is one advantage of the PFM approach.

6
Amos, p. 50.

234 CHAPTER IV. MOLECULAR COMPUTATION

5.6 Implementation of the Parallel Filtering Model 117

5.6 Implementation of the Parallel Filtering Model

Here we describe how how the set operations within the Parallel Filtering
Model described in Section 3.2 may be implemented.

Remove

remove(U, {Si}) is implemented as a composite operation, comprised of the
following:

• mark(U, S). This operation marks all strings in the set U which contains
at least one occurrence of the substring S.

• destroy(U). This operation removes all marked strings from U .

mark(U, S) is implemented by adding to U many copies of a primer corre-
sponding to S (Fig. 5.7b). This primer only anneals to single strands contain-
ing the subsequence S. We then add DNA polymerase to extend the primers
once they have annealed, making only the single strands containing S double
stranded (Fig. 5.7b).

Polymerase extends

(a)

(b)

(c)

(d)

Primer block

Restrict Restrict Restrict

Restriction site Target sequence

Fig. 5.7. Implementation of destroy

We may then destroy strands containing S by adding the appropriate restric-
tion enzyme. Double-stranded DNA (i.e. strands marked as containing S) is
cut at the restriction sites embedded within, single strands remaining intact

Figure IV.8: Remove operation implemented by mark and destroy. [source:
Amos]

¶7. Union: The operation union({U
1

, . . . , Un}, U) combines in parallel the
multi-sets U

1

, . . . , Un into U .

¶8. Copy: The operation copy(U, {U
1

, . . . , Un}) divides multi-set U into n

equal multi-sets U
1

, . . . , Un.

¶9. Select: The operation select(U) returns a random element of U . If
U = ;, then it returns ;.

¶10. Homogeneous DNA can be detected and sequenced by PCR.
Nested PCR can be used in non-homogeneous cases (multiple solu-
tions).

¶11. These operations are assumed to be constant-time.

¶12. Periodic amplification (especially after copy operations) may be neces-
sary to ensure an adequate number of instances.

¶13. Amos et al. have done a number of experiments to determine optimum
reactions parameters and procedures.

B. FILTERING MODELS 235

B.4.b Permutations

¶1. Input: “ The input set U consists of all strings of the form p

1

i

1

p

2

i

2

· · · pnin
where, for all j, pj uniquely encodes ‘position j’ and each ij is in
{1, 2, . . . , n}. Thus each string consists of n integers with (possibly)
many occurrences of the same integer.”7

¶2. for j = 1 to n� 1 do
copy(U, {U

1

, U

2

, . . . , Un})
for i = 1, 2, . . . , n and all k > j

in parallel do remove(Ui, {pjij 6= pji, pki})
// Ui contains i in jth position and no other is
union({U

1

, U

2

, . . . , Un}, U)
end for
Pn U

¶3. In the preceding, remove(Ui, {pjij 6= pji, pki}) means to remove from Ui

all strings that have a pj value not equal to i and all strings containing
pki for any k > j.
For example, if i = 2 and j = n � 1, this remove operation translates
to remove(U

2

, {pn�1

1, pn�1

3, pn�1

4, . . . , pn�1

n, pn2}).
That is, it eliminates all strings except those with 2 in the n�1 position,
and eliminates those with 2 in the n position.

¶4. At the end of iteration j we have:

↵z }| {
p

1

i

1

p

2

i

2

· · · pjij pj+1

ij+1

· · · pnin| {z }
�

where ↵ represents a permutation of j integers from 1, . . . , n, and none
of these integers i

1

, . . . , ij are in �.

¶5. NP-complete problems: Amos shows how to do a number of NP-
complete problems, including 3-vertex-colorability, HPP, subgraph iso-
morphism, and maximum clique.

7
Amos, p. 51.

