C Formal models

C． 1 Sticker systems

C．1．a Basic operations
【1．The sticker model was developed by Rosweis et al．in the mid－1990s．
T2．It depends primarily on separation by means of hybridization and makes no use of strand extension and enzymes．

【3．It implements a sort of random－access binary memory．
T4．Substrands：Each bit position is represented by a substrand of length m ．

T5．Memory strands：A memory strand comprises k contiguous sub－ strands，and so has length $n=k m$ and can store k bits．

【6．Sticker strands：Sticker strands or stickers are strands that are com－ plementary to substrands representing bits．
When a sticker is bound to a bit，it represents 1 ． If no sticker is bound，the bit is 0 ．

97．Complex：Such a strand，which is partly double and partly single，is called a complex．

【8．Library：Computations begin with a prepared library of strings．
A (k, l) library uses the first $l \leq k$ bits as inputs to the algorithm，and the remaining $k-l$ for output and working storage．
Therefore，that last $k-l$ are initially 0 ．
49．Operations：There are four basic operations，which act on multi－set of binary strings：

【10．Merge：Creates the union of two tubes（multi－sets）．
【11．Separate：The operation separate (N, i) separates a tube N into two tubes：
$+(N, i)$ contains all strings in which bit i is 1 ．
$-(N, i)$ contains all strings in which bit i is 0 ．

【12．Set：The operation $\operatorname{set}(N, i)$ produces a tube in which every string from N has had its i th bit set to 1 ．

【13．Clear：The operation clear (N, i) produces a tube in which every string from N has had its i th bit cleared to 0 ．

C．1．b SET COVER PROBLEM

【1．Set cover problem：The set cover problem is a classic NP－complete problem．
Given a finite set of p objects S ，
and a finite collection of subsets of $S\left(C_{1}, \ldots, C_{q} \subset S\right)$ ，
whose union is S ，
find the smallest collection of these subsets whose union is S ．
E．g．，finding the minimum number of people who can do all the tasks／．
T2．Example：$S=\{1,2,3,4,5\}$ ．
$C_{1}=\{3,4,5\}, C_{2}=\{1,3,4\}, C_{3}=\{1,2,5\}, C_{4}=\{3,4\}$.
In this case there are three minimal solutions：$\left\{C_{1}, C_{3}\right\},\left\{C_{3}, C_{4}\right\},\left\{C_{2}, C_{3}\right\}$ ．
43．Data representation：The memory strands are of size $k=p+q$ ．
Each strand represents a collection of subsets，and the first q bits encode which subsets are in the collection．
Call them subset bits．
【4．For example 1011 represents $\left\{C_{1}, C_{3}, C_{4}\right\}$ and 0010 represents $\left\{C_{3}\right\}$ ．
45．Eventually，the last p bits will represent the union of the collection， that is，the elements of S that are contained in at lease one subset in the collection．
Call them element bits．
For example， 010110110 represents $\left\{C_{2}, C_{4}\right\}\{1,3,4\}$ ．
46．Library：The algorithm begins with the $(p+q, q)$ library，which must be initialized to reflect the subsets＇members．

97．Step 1 （initialization）：For all strands，if the i subset bit is set，then set the bits for all the elements of that subset． Call the result tube N_{0} ．

Figure IV.9: Sorting of covers by repeated separations. [source: Amos, Fig. 3.4]

【8．This is accomplished by the following code：
Initialize $(p+q, q)$ library in N_{0}
for $i=1$ to q do
separate $\left(+\left(N_{0}, i\right),-\left(N_{0}, i\right)\right) \quad / /$ separate those with subset i
for $j=1$ to $\left|C_{i}\right|$ do $\operatorname{set}\left(+\left(N_{0}, i\right), q+c_{i}^{j}\right) \quad / /$ set bit for j th element of set i
end for
$N_{0} \leftarrow \operatorname{merge}\left(+\left(N_{0}, i\right),-\left(N_{0}, i\right)\right) / /$ recombine
end for
【9．Step 2 （retain covers）：Retain only the strands that represent col－ lections that cover the set．
To do this，retain in N_{0} only the strands whose last p bits are set．
【10．for $i=q+1$ to $q+p$ do
$N_{0} \leftarrow+\left(N_{0}, i\right) \quad / /$ retain those with element i
end for
【11．Step 3 （isolate minimum covers）：Tube N_{0} now holds all covers， so we have to somehow sort its contents to find the minimum cover（s）． Set up a row of tubes $N_{0}, N_{1}, \ldots, N_{q}$ ．
We will arrange it that N_{i} contains the covers of size i ；then we just have to find the first tube with some DNA in it．

【12．Sorting：For $i=1, \ldots, q$ ，＂drag＂to the right all collections containing C_{i} ，that is，for which bit i is set．
See Fig．IV．9．
【13．This is accomplished by the following code：

$$
\begin{aligned}
& \text { for } i=0 \text { to } q-1 \text { do } \\
& \text { for } j=i \text { down to } 0 \text { do } \\
& \quad \text { separate }\left(+\left(N_{j}, i+1\right),-\left(N_{j}, i+1\right)\right) / / \text { those that do \& don't have } i \\
& \quad N_{j+1} \leftarrow \text { merge }\left(+\left(N_{j}, i+1\right), N_{j+1}\right) / / \text { move those that do to } N_{j+1} \\
& N_{j} \leftarrow-\left(N_{j}, i+1\right) \\
& \text { end for } \\
& \text { end for }
\end{aligned}
$$

C． 2 Splicing systems

【1．It has been argued that the full power of a TM requires some sort of string editing operation．

【2．Splicing systems：Therefore，beginning with Tom Head（1987），a number of splcing systems have been defined．

【3．Splicing operation：The splicing operations takes two strings $S=$ $S_{1} S_{2}$ and $T=T_{1} T_{2}$ and performs a＂crossover＂at a specified location， yielding $S_{1} T_{2}$ and $T_{1} S_{2}$ ．

【4．Finite extended splicing systems have been show to be computationally universal（1996）．

45．Parallel Associative Memory Model：The Parallel Associative Memory（PAM）Model was defined by Reif in 1995.

【6．It is based on a restricted splicing operation called parallel associative matching（PA－Match）operation called Rsplice．

『7．Suppose $S=S_{1} S_{2}$ and $T=T_{1} T_{2}$ ．

$$
\operatorname{Rsplice}(S, T)=S_{1} T_{2}, \quad \text { if } S_{2}=T_{1},
$$

and is undefined otherwise．
【8．The PAM model can simulate nondeterministic TMs and parallel ran－ dom access machines．

