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B Thermodynamics of computation

B.1 Von Neumann-Landaur Principle

¶1. Entropy: A quick introduction/review of the entropy concept. We
will look at it in more detail soon (Sec. B.4).

¶2. Information content: The information content of a signal (message)
measures our “surprise,” i.e., how unlikely it is.
I(s) = � logb P{s}, where P{s} is the probability of s.
We take logs so that the information content of independent signals is
additive.
We can use any base, with corresponding units bits, nats, and dits (also,
hartleys, bans) for b = 2, e, 10.

¶3. 1 bit: Therefore, if a signal has a 50% probability, then it conveys one
bit of information.

¶4. Entropy of information: The entropy of a distribution of signals is
their average information content:

H(S) = E{I(s) | s 2 S} =
X
s2S

P{s}I(s) = �
X
s2S

P{s} logP{s}.

Or more briefly, H = �
P

k pk log pk.

¶5. Shannon’s entropy: According to a well-known story, Shannon was
trying to decide what to call this quantity and had considered both
“information” and “uncertainty.” Because it has the same mathemat-
ical form as statistical entropy in physics, von Neumann suggested he
call it “entropy,” because “nobody knows what entropy really is, so in
a debate you will always have the advantage.”8

(This is one version of the quote.)

¶6. Uniform distribution: If there are N signals that are all equally
likely, then H = logN .
Therefore, if we have eight equally likely possibilities, the entropy is
H = lg 8 = 3 bits.
A uniform distribution maximizes the entropy (and minimizes the abil-
ity to guess).

8https://en.wikipedia.org/wiki/History of entropy (accessed 2012-08-24).
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Figure II.3: Physical microstates representing logical states. Setting the bit
decreases the entropy: �H = lgN � lg(2N) = �1 bit. That is, we have one
bit of information about its microstate.

¶7. Macrostates and microstates: Consider a macroscopic system com-
posed of many microscopic parts (e.g., a fluid composed of many molecules).
In general a very large number of microstates (or microconfigurations)
— such as positions and momentums of molecules — will correspond
to a given macrostate (or macroconfiguration) — such as a combination
of pressure and termperature.
For example, with m = 1020 particles we have 6m degrees of freedom,
and a 6m-dimensional phase space.

¶8. Thermodynamic entropy: Macroscopic thermodynamic entropy S
is related to microscopic information entropy H by Boltzmann’s con-
stant, which expresses the entropy in thermodynamical units (energy
over temperature).
S = k

B

H.
(There are technical details that I am skipping.)

¶9. Microstates representing a bit: Suppose we partition the microstates
of a system into two macroscopically distinguishable macrostates, one
representing 0 and the other representing 1.
Suppose N microconfigurations correspond to each macroconfiguration
(Fig. II.3).
If we confine the system to one half of its microstate space, to repre-
sent a 0 or a 1, then the entropy (average uncertainty in identifying the
microstate) will decrease by one bit.
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We don’t know the exact microstate, but at least we know which half
of the statespace it is in.

¶10. Overwriting a bit: Consider the erasing or overwriting of a bit whose
state was originally another known bit.

¶11. We are losing one bit of physical information. The physical information
still exists, but we have lost track of it.

Suppose we have N physical microstates per logical macrostate (0 or
1). Therefore, there are N states in the bit we are copying and N in the
bit to be overwritten. But there can be only N in the rewritten bit, so
N must be dissipated into the environment. �S = k ln(2N)�k lnN =
k ln 2 dissipated. (Fig. II.3)

¶12. The increase of entropy is �S = k ln 2, so the increase of energy in the
heat reservoir is �S ⇥ T

env

= kT
env

ln 2 ⇡ 0.7kT
env

. (Fig. II.4)
kT

env

ln 2 ⇡ 18 meV ⇡ 3 ⇥ 10�9pJ.

¶13. von Neumann – Landauer bound: This is the von Neumann –
Landauer (VNL) bound. VN suggested the idea in 1949, but it was
published first by Rolf Landauer (IBM) in 1961.

¶14. “From a technological perspective, energy dissipation per logic oper-
ation in present-day silicon-based digital circuits is about a factor of
1,000 greater than the ultimate Landauer limit, but is predicted to
quickly attain it within the next couple of decades.” (Berut et al.,
2012)
That is, current circuits are about 18 eV.

¶15. Experimental confirmation: In March 2012 the Landauer bound
was experimentally confirmed (Berut et al., 2012).

B.2 Erasure

This lecture is based on Charles H. Bennett’s “The Thermodynamics of Com-
putation — a Review” (Bennett, 1982). Unattributed quotations are from
this paper.

“Computers may be thought of as engines for transforming free energy
into waste heat and mathematical work.” (Bennett, 1982)
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Figure II.4: Bit A = 1 is copied over bit B (two cases: B = 0 and B = 1).
In each case there are W = N2 micro states representing each prior state,
so a total of 2W logically meaningful microstates. However, at time t +�t
the two-bit system must be on one of W posterior microstates. Therefore
W of the trajectories have exited the A = B = 1 region of phase space, and
so they are no longer logically meaningful. The entropy of the environment
must increase by �S = k ln(2W ) � k lnW = k ln 2. We lose track of this
information because it passes into uncontrolled degrees of freedom.

¶1. As it turns out, it is not measurement or copying that necessarily dis-
sipates energy, it is the erasure of previous information to restore it to
a standard state so that it can be used again.
Thus, in a TM writing a symbol on previously used tape requires two
steps: erasing the previous contents and then writing the new contents.
It is the former process that increases entropy and dissipates energy.
Cf. the mechanical TM we saw in CS312; it erased the old symbol be-
fore it wrote the new one.
Cf. also old computers on which the load instruction was called “clear
and add.”

¶2. A bit can be copied reversibly, with arbitrarily small dissipation, if it
is initially in a standard state (Fig. II.5).
The reference bit (fixed at 0, the same as the moveable bit’s initial
state) allows the initial state to be restored, thus ensuring reversibility.

¶3. Susceptible to degradation by thermal fluctuation and tunneling. How-
ever, the error probability ⌘ and dissipation ✏/kT can be kept arbitrarily
small and much less than unity.
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Figure II.5: [from Bennett (1982)]
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✏ here is the driving force.

¶4. Whether erasure must dissipate energy depends on the prior state (Fig.
II.6).

(B) The initial state is genuinely unknown. This is reversible (steps
6 to 1). kT ln 2 work was done to compress it into the left potential
well (decreasing the entropy). Reversing the operation increases the
entropy by kT ln 2.
That is, the copying is reversible.

(C) The initial state is known (perhaps as a result of a prior computa-
tion or measurement). This initial state is lost (forgotten), converting
kT ln 2 of work into heat with no compensating decrease of entropy.
The irreversible entropy increase happens because of the expansion at
step 2. This is where we’re forgetting the initial state (vs. case B, where
there was nothing known to be forgotten).

¶5. In research reported in March 2012 (Berut et al., 2012) a setup very
much like this was used to confirm experimentally the Landauer Prin-
ciple and that it is the erasure that dissipates energy.

“incomplete erasure leads to less dissipated heat. For a success rate of
r, the Landauer bound can be generalized to”

hQir
Landauer

= kT [ln 2+r ln r+(1�r) ln(1�r)] = kT [ln 2�H(r, 1�r)].

“Thus, no heat needs to be produced for r = 0.5” (Berut et al., 2012).

¶6. We have seen that erasing a random register increases entropy in the
environment in order to decrease it in the register: NkT ln 2 for an
N -bit register.

¶7. Such an initialized register can be used as “fuel” as it thermally ran-
domizes itself to do NkT ln 2 useful work.
Keep in mind that these 0s (or whatever) are physical states (charges,
compressed gas, magnetic spins, etc.).

¶8. Any computable sequence of N bits (e.g., the first N bits of ⇡) can be
used as fuel by a slightly more complicated apparatus. Start with a
reversible computation from N 0s to the bit string.
Reverse this computation, which will transform the bit string into all
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Figure II.6: [from Bennett (1982)]
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0s, which can be used as fuel. This “uncomputer” puts it in usable
form.

¶9. Suppose we have a random bit string, initialized, say, by coin tossing.
Because it has a specific value, we can in principle get NkT ln 2 useful
work out of it, but we don’t know the mechanism (the “uncomputer”)
to do it. The apparatus would be specific to each particular string.

B.3 Algorithmic entropy

¶1. Algorithmic information theory was developed by Ray Solomono↵ c.
1960, Andrey Kolmogorov in 1965, and Gregory Chaitin, around 1966.

¶2. Algorithmic entropy: The algorithmic entropy H(x) of a microstate
x is the number of bits required to describe x as the output of a uni-
versal computer, roughly, the size of the program required to compute
it.
Specifically the smallest “self-delimiting” program (i.e., its end can be
determined from the bit string itself).

¶3. Di↵erences in machine models lead to di↵erences of O(1), and so H(x)
is well-defined up to an additive constant (like thermodynamical en-
tropy).

¶4. Note that H is not computable (Rice’s Theorem).

¶5. Algorithmically random: A string is algorithmically random if it
cannot be described by a program very much shorter than itself.

¶6. For any N , most N -bit strings are algorithmically random.
(For example, “there are only enough N � 10 bit programs to describe
at most 1/1024 of all the N -bit strings.”)

¶7. Deterministic transformations cannot increase algorithmic entropy very
much.
Roughly, H[f(x)] ⇡ H(x) + |f |, where |f | is the size of program f .
Reversible transformations also leave H unchanged.

¶8. A transformation must be probabilistic to be able to increase H signif-
icantly.
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¶9. Statistical entropy: Statistical entropy in units of bits is defined:

S
2

(p) = �
X

x

p(x) lg p(x).

¶10. Statistical entropy (a function of the macrostate) is related to algorith-
mic entropy (an average over algorithmic entropies of microstates) as
follow:

S
2

(p) <
X

x

p(x)H(x)  S
2

(p) +H(p) + O(1).

¶11. A macrostate p is concisely describable if, for example, “it is determined
by equations of motion and boundary conditions describable in a small
number of bits.”
In this case S

2

and H are closely related as given above.

¶12. For macroscopic systems, typically S
2

(p) = O(1023) while H(p) =
O(103).

¶13. If the physical system increases its H by N bits, which it can do only by
acting probabilistically, it can “convert about NkT ln 2 of waste heat
into useful work.”

¶14. “[T]he conversion of about NkT ln 2 of work into heat in the surround-
ings is necessary to decrease a system’s algorithmic entropy by N bits.”

B.4 Mechanical and thermal modes

These lecture is based primarily on Edward Fredkin and Tommaso To↵oli’s
“Conservative logic” (Fredkin & To↵oli, 1982).

¶1. Systems can be classified by their size and completeness of specification:

specification: complete incomplete
size: ⇠ 1 ⇠ 100 ⇠ 1023

laws: dynamical statistical thermodynamical
reversible: yes no no

¶2. Dynamical system: Some systems with a relatively small number of
particles or degrees of freedom can be completely specified.
E.g., 6 DoF for each particle (x, y, z, px, py, pz).
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¶3. That is, we can prepare an individual system in an initial state and
expect that it will behave according to the dynamical laws that describe
it.

¶4. Think of billiard balls or pucks on a frictionless surface, or electrons
moving through an electric or magnetic field.

¶5. So far as we know, the laws of physics at this level (classical or quantum)
are reversible.

¶6. Statistical system: If there are a large number of particles with many
degrees of freedom (several orders of magnitude), then it is impractical
to specify the system completely.

¶7. Small errors in the initial state will have a larger e↵ect, due to complex
interaction of the particles.

¶8. Therefore we must resort to statistical laws.

¶9. They don’t tell us how an individual system will behave (there are too
many sources of variability), but they tell us how ensembles of similar
systems (or preparations) behave.

¶10. We can talk about the average behavior of such systems, but we also
have to consider the variance, because unlikely outcomes are not im-
possible.
For example, tossing 10 coins has a probability of 1/1024 of turning up
all heads.

¶11. Statistical laws are in general irreversible (because there are many ways
to get to the same state).

¶12. Thermodynamical system: Macroscopic systems have a very large
number of particles (⇠ 1023) and a correspondingly large number of
DoF. “Avogadro scale” numbers.

¶13. Obviously such systems cannot be completely specified (we cannot de-
scribe the initial state and trajectory of every atom).

¶14. We can derive statistical laws, but in these cases most macrostates
become so improbable that they are virtually impossible: Example:
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the cream unmixing from your co↵ee.
The central limit theorem shows that the variance decreases with n.

In the thermodynamic limit, the likely is inevitable, and the unlikely is
impossible.

¶15. In these cases, thermodynamical laws describe the virtually determin-
istic (but irreversible) dynamics of the system.

¶16. Mechanical vs. thermal modes: Sometimes in a macroscopic sys-
tem we can separate a small number of mechanical modes (DoF) from
the thermal modes.

“Mechanical” includes “electric, magnetic, chemical, etc. degrees of
freedom.”

¶17. The mechanical modes are strongly coupled to each other but weakly
coupled to the thermal modes.
(e.g., bullet, billiard ball)

¶18. Thus the mechanical modes can be treated exactly or approximately
independently of the thermal modes.

¶19. Conservative mechanisms: In the ideal case the mechanical modes
are completely decoupled from the thermal modes, and so the mechan-
ical modes can be treated as an isolated (and reversible) dynamical
system.

¶20. The energy of the mechanical modes (once initialized) is independent
of the energy (⇠ kT ) of the thermal modes.

¶21. The mechanical modes are conservative; they don’t dissipate any en-
ergy.

¶22. This is the approach of reversible computing.

¶23. Damped mechanisms: Suppose we want irreversible mechanical modes,
e.g., for implementing irreversible logic.

¶24. The physics is reversible, but the information lost by the mechanical
modes cannot simply disappear; it must be transferred to the thermal
modes. This is damping.
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Figure II.7: Complementary relation of damping and fluctuations.

¶25. But the transfer is reversible, so noise will flow from the thermal modes
back to the mechanical modes, making the system nondeterministic.

¶26. “If we know where the damping comes from, it turns out that that is
also the source of the fluctuations” [Feynman, 1963].

Think of a bullet ricocheting o↵ a flexible wall filled with sand. It
dissipates energy into the sand and also acquires noise in its trajectory
(see Fig. II.7).

¶27. To avoid nondeterminacy, the information may be encoded redundantly
so that the noise can be filtered out.

I.e., signal is encoded in multiple mechanical modes, on which we take
a majority vote or an average.

¶28. The signal can be encoded with energy much greater than any one of
the thermal modes, E � kT , to bias the energy flow from mechanical
to thermal preferring dissipation to noise).

¶29. Signal regeneration: Free energy must refresh the mechanical modes
and heat must be flushed from the thermal modes.

¶30. “[I]mperfect knowledge of the dynamical laws leads to uncertainties in
the behavior of a system comparable to those arising from imperfect
knowledge of its initial conditions. . . Thus, the same regenerative pro-
cesses which help overcome thermal noise also permit reliable operation
in spite of substantial fabrication tolerances.”

¶31. Damped mechanisms have proved to be very successful, but they are
inherently ine�cient.
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¶32. “In a damped circuit, the rate of heat generation is proportional to the
number of computing elements, and thus approximately to the useful
volume; on the other hand, the rate of heat removal is only proportional
to the free surface of the circuit. As a consequence, computing circuits
using damped mechanisms can grow arbitrarily large in two dimensions
only, thus precluding the much tighter packing that would be possible
in three dimensions.”

B.5 Brownian computers

¶1. Rather than trying to avoid randomization of kinetic energy (transfer
from mechanical modes to thermal modes), perhaps it can be exploited.
An example of respecting the medium in embodied computation.

¶2. Brownian computer: Makes logical transitions as a result of thermal
agitation.
It is about as likely to go backward as forward.
It may be biased in the forward direction by a very weak external
driving force.

¶3. DNA: DNA transcription is an example. It runs at about 30 nu-
cleotides per second and dissipates about 20kT per nucleotide, making
less than one mistake per 105 nucleotides.

¶4. Chemical Turing machine: Tape is a large macromolecule analogous
to RNA.
An added group encodes the state and head location.
For each tradition rule there is a hypothetical enzyme that catalyzes
the state transition.

¶5. Drift velocity is linear in dissipation per step.

¶6. We will look at molecular computation in much more detail later in the
class.

¶7. Clockwork Brownian TM: He considers a “clockwork Brownian
TM” comparable to the billiard ball computers. It is a little more
realistic, since it does not have to be machined perfectly and tolerates
environmental noise.

¶8. Drift velocity is linear in dissipation per step.
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Figure II.8: Di↵erent degrees of logical reversibility. [from (Bennett, 1982)]

B.5.a Reversibility in computing

¶1. Bennett (1973) defined a reversible TM.

¶2. As in ballistic computing, Brownian computing needs logical reversibil-
ity.

¶3. A small degree of irreversibility can be tolerated (see Fig. II.8).
(A) Strictly reversible computation. Any driving force will ensure for-
ward movement.
(B) Modestly irreversible computation. There are more backward de-
tours, but can still be biased forward.
(C) Exponentially backward branching trees. May spend much more
of its time going backward than going forward, especially since one
backward step is likely to lead to more backward steps.

¶4. For forward computation on such a tree the dissipation per step must
exceed kT times the log of the mean number of immediate predecessors
to each state.

¶5. These undesired states may outnumber desired states by factors of 2100,
requiring driving forces on the order of 100kT .
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Why 2100? Think of the number of possible predecessors to a state that
does something like x := 0. Or the number of ways of getting to the
next statement after a loop.


