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Reversible computing

C.1 Reversible computing as solution

This section is based on Frank (2005).

C.1l.a POSSIBLE SOLUTION

q1.

.

93.

q.

qs.

96.

Notice that the key quantity Fg in Eqn. II.1 depends on the energy
dissipated as heat.

The 100kgT limit depends on the energy in the signal (necessary to
resist thermal fluctuation causing a bit flip).

There is nothing to say that information processing has to dissipate
energy; an arbitrarily large amount of it can be recovered for future
operations.

“Arbitrary” in the sense that there is no inherent physical lower bound

on the energy that must be dissipated.

It becomes a matter of precise energy management, moving it around
in different patterns, with as little dissipation as possible.

Indeed, Eg, can be increased to improve reliability, provided we mini-
mize dissipation of energy.

This can be accomplished by making the computation logically re-
versible (i.e., each successor state has only one predecessor state).

C.1.b REVERSIBLE PHYSICS

q1.
Q.

qs.
q.

All fundamental physical theories are Hamiltonian dynamical systems.

All such systems are time-reversible. That is, if ©)(¢) is a solution, then
so is (—t).
In general, physics is reversible.

Physical information cannot be lost, be we can lose track of it. This is
entropy: “unknown information residing in the physical state.”

Note how this is fundamentally a matter of information and knowledge.
What is irreversible is the information loss.
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C.1.c REVERSIBLE LOGIC

q1.

.

qs.

To avoid dissipation, don’t erase information. The problem is to keep
track of information that would otherwise be dissipated.

This is accomplished by making computation logically reversible.

(It is already physically reversible.)

The information is rearranged and recombined in place. (We will see
lots of examples of how to do this.)

C.1.d PROGRESS
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In 1973, Charles Bennett (IBM) first showed how any computation
could be embedded in an equivalent reversible computation. Rather
than discarding information, it keeps it around so it can later “decom-
pute” it. This was logical reversibility; he did not deal with the problem
of physical reversibility.

Brownian Computers: Or “Brownian motion machines.” This was
an attempt to suggest a possible physical implementation of reversible
computation.

“the mean free path of the system’s trajectory was much shorter than
the distance between neighboring computational states” (see also [B82]).

Therefore: “In absence of any energy input, the system progressed
essentially via a random walk, taking an expected time of ©(n?) to
advance n steps.”

A small energy input biases the process in the forward direction, so
that it precedes linearly, but still very slowly.

Compare “DNA polymerization, which (under normal conditions, such
as during cell division) proceeds at a rate on the order of only 1,000
nucleotides per second, with a dissipation of ~ 40kgT per step.”

This is about 1 eV (see §7 below).

Note that DNA replication includes error-correcting operations.

Energy coefficient: Since “asymptotically reversible processes (in-
cluding the DNA example) proceed forward at an adjustable speed,
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proportional to the energy dissipated per step,” define an energy coef-

ficient:
def

Cg = Ediss/fopa
“where Fgiss is the energy dissipated per operation, and f,, is the fre-
quency of operations.”

“In Bennett’s original DNA process, the energy coefficient comes out
to about cg = 1eV /kHz.”
That is, for DNA, cg ~ 40kT /kHz = 40 x 26 meV /kHz ~ 1 eV /kHz.

But it would be desirable to operate at GHz frequencies and energy
dissipation below kgT'.

Recall that at room temp. kg7 ~ 26 meV (Sec. A €6, p. 31).

So we need energy coefficients much lower than DNA.

This is an issue, of course, for molecular computation.

Information Mechanics group: In 1970s, Ed Fredkin, Tommaso
Toffoli, et al. at MIT.

Ballistic computing: F & T described computation with idealized,
perfectly elastic balls reflecting off barriers. Minimum dissipation, pro-
pelled by (conserved) momentum. Unrealistic. Later we will look at it
briefly.

They suggested a more realistic implementation involving “charge pack-
ets bouncing around along inductive paths between capacitors.”

Richard Feynman (CalTech) had been interacting with IM group, and
developed “a full quantum model of a serial reversible computer” (Feyn-
man, 1986).

Adiabatic circuit: Since 1980s there has been work in adiabatic cir-
cuits, esp. in 1990s.

An adiabatic process takes place without input or dissipation of energy.
Adiabatic circuits minimize energy use by obeying certain circuit design
rules.  “[A]rbitrary, pipelined, sequential logic could be implemented
in a fully-reversible fashion, limited only by the energy coefficients and
leakage currents of the underlying transistors.”
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€14. As of 2004, est. cg = 3 meV /kHz, about 250x less than DNA.

€15. “It is difficult to tell for certain, but a wide variety of post-transistor
device technologies have been proposed ... that have energy coeffi-
cients ranging from 10° to 10'? times lower than present-day CMOS!
This translates to logic circuits that could run at GHz to THz frequen-
cies, with dissipation per op that is still less (in some cases orders of
magnitude less) than the VNL bound of kgT'In2 ... that applies to
all irreversible logic technologies. Some of these new device ideas have
even been prototyped in laboratory experiments [2001].”

€16. “Fully-reversible processor architectures [1998] and instruction sets [1999]
have been designed and implemented in silicon.”

€17. But this is more the topic of a CpE course. . .

C.2 Physical assumptions of computing

These lectures are based primarily on Edward Fredkin and Tommaso Toffoli’s
“Conservative logic” (Fredkin & Toffoli, 1982).

C.2.a DISSIPATIVE LOGIC

€1. The following physical principles are implicit in the existing theory of
computation.

2. P1. The speed of propagation of information is bounded: No
action at a distance.

3. P2. The amount of information which can be encoded in the
state of a finite system is bounded: This is a consequence of
thermodynamics and quantum theory.

4. P3. It is possible to construct macroscopic, dissipative physi-
cal devices which perform in a recognizable and reliable way
the logical functions AND, NOT, and FAN-OUT: This is an

empirical fact.
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C.2.b CONSERVATIVE LOGIC

q1.

.

qs.

q“.
qs.

9.

q7.
qs.

99.

“Computation is based on the storage, transmission, and processing of
discrete signals.”

Only macroscopic systems are irreversible, so as we go to the micro-
scopic level, we need to understand reversible logic. This leads to new
physical principles.

P4. Identity of transmission and storage: In a relativistic sense,
they are identical.

P5. Reversibility: Because microscopic physics is reversible.

P6. One-to-one composition: Physically, fan-out is not trivial, so
we cannot assume that one function output can be substituted for any
number of input variables.

We have to treat fan-out as a specific signal-processing element.

P7. Conservation of additive quantities: It can be shown that
in a reversible systems there are a number of independent conserved
quantities.

In many systems they are additive over the subsystems.

P8. The topology of space-time is locally Euclidean: “Intu-
itively, the amount of ‘room’ available as one moves away from a certain
point in space increases as a power (rather than as an exponential) of
the distance from that point, thus severely limiting the connectivity of
a circuit.”

What are sufficient primitives for conservative computation?
The unit wire and the Fredkin gate.

C.3 Unit wire

q1.

Information storage in one reference frame may be information trans-
mission in another.

E.g., leaving a note on a table in an airplane (at rest with respect to
earth or not, or to sun, etc.).
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Figure I1.9: Symbol for unit wire. (Fredkin & Toffoli, 1982)
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Figure I1.10: “(a) Symbol and (b) operation of the Fredkin gate.” (Fredkin
& Toffoli, 1982)

€2. The unit wire moves one bit of information from one space-time point
to another space-time point separated by one unit of time. See Fig.
I1.9.

93. State: “The value that is present at a wire’s input at time ¢ (and at
its output at time ¢ 4 1) is called the state of the wire at time t.”

94. It is invertible and conservative (since it conserves the number of Os
and 1s in its input).
(Note that there are mathematically reversible functions that are not
conservative, e.g., NOT.)

C.4 Fredkin gate

€1. Conservative logic gate: Any Boolean function that is invertible
and conservative.

€2. Conditional rerouting: Since the number of 1s and 0Os is conserved,
conservative computing is essentially conditional rerouting

3. Rearranging vs. rewriting: Conventional models of computation
are based on rewriting
(e.g., TMs, lambda calculus, register machines, term rewriting systems,
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Figure I1.11: Alternative notation for Fredkin gate.
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q7.

Post and Markov productions).
But we have seen that overwriting dissipates energy (and is non-conservative).

In conservative logic we rearrange bits without creating or destroying
them.
(No infinite “bit supply” and no “bit bucket.”)

Fredkin gate: The Fredkin gate is a conditional swap operation (also
called CSWAP):

= (1,a,b),
— (0,b,a).

The first input is a control signal and the other two are data signals.
Here, 0 signals a swap, but some authors use 1 to signal a swap.

See Fig. I1.10 and Fig. I1.13. Fig. I1.11 shows an alternative notation
for the Fredkin gate.

Note that it is reversible and conservative.

Universal: The Fredkin gate is a universal Boolean primitive for con-
servative logic.

C.5 Conservative logic circuits

qL.

“A conservative-logic circuit is a directed graph whose nodes are conservative-
logic gates and whose arcs are wires of any length [Fig. I1.12].”
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Figure I1.12: “(a) closed and (b) open conservative-logic circuits.” (Fredkin

& Toffoli, 1982)
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Figure I1.13: “Behavior of the Fredkin gate (a) with unconstrained inputs,
and (b) with xo constrained to the value 0, thus realizing the AND function.”
(Fredkin & Toffoli, 1982)
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¢ (source)

(argument) z ¢ Y (result)

g (sink)

Figure 11.14: “Realization of f by ¢ using source and sink. The function
¢ : (c,x) — (y,g) is chosen so that, for a particular value of ¢,y = f(x).”
(Fredkin & Toffoli, 1982)

2. We can think of the gate as instantaneous and the unit wire as being
a unit delay, of which we can make a sequence (or imagine intervening
identity gates).

93. Closed vs. open: A closed circuit is a closed (or isolated) physical
system.
An open circuit has external inputs and outputs.

4. The number of outputs must equal the number of inputs.

€5. It may be part of a larger conservative circuit, or connected to the
environment.

€6. Discrete-time dynamical system: A conservative-logic circuit is a
discrete-time dynamical system.

7. Degrees of freedom: The number N of unit wires in the circuit is
its number of DoF.
The numbers of Os and 1s at any time is conserved, N = Ny + V;.

C.6 Constants and garbage

€1. The Fredkin gate can be used to compute non-invertible functions such
as AND, if we are willing to provide appropriate constants (called “an-
cillary values”) and to accept unwanted outputs (see Fig. 11.13).
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Figure I1.15: “Realization of the (a) OR, (b) NOT, and (c) FAN-OUT func-
tions by means of the Fredkin gate.” (Fredkin & Toffoli, 1982)
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Figure I1.16: “1-line-to 4-line demultiplexer. The ‘address’ lines Ay, A; spec-
ify to which of the four outputs Yy, ..., Y3 the ‘data’ signal X is to be routed.
(Note that here the sink lines happen to echo the address lines.)” (Fredkin
& Toffoli, 1982)

€2. In general, one function can be embedded in another by providing ap-
propriate constants from a source and ignoring some of the outputs,
the sink, which are considered garbage.

93. However, this garbage cannot be thrown away (which would dissipate
energy), so it must be recycled in some way.

C.7 Universality

1. OR, NOT, and FAN-OUT: Fig. I1.15 shows Fredkin realizations of
other common gates.
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Q.

qs.

q“.

Demultiplexer example: Fig. I[1.16 shows a 1-line to 4-line demulti-
plexer.

Hence you can convert conventional logic circuits into conservative cir-
cuits, but the process is not very efficient. It’s better to design the
conservative circuit from scratch.

Universality: “any computation that can be carried out by a con-
ventional sequential network can also be carried out by a suitable
conservative-logic network, provided that an external supply of con-
stants and an external drain for garbage are available.”

(Will see how to relax these constraints: Sec. C.8)

C.8 Garbageless conservative logic

q1.

Q.

qs.

q.

qs.

To reuse the apparatus for a new computation, we will have to throw
away the garbage and provide fresh constants, both of which will dis-
sipate energy.

Exponential growth of garbage: This is a significant problem if
dissipative circuits are naively translated to conservative circuits be-
cause:

(1) the amount of garbage tends to increase with the number of gates,
and

(2) with the naive translation, the number of gates tends to increase
exponentially with the number of input lines.

“This is so because almost all boolean functions are ‘random’, i.e., can-
not be realized by a circuit simpler than one containing an exhaustive
look-up table.”

However there is a way to make the garbage the same size as the input
(in fact, identical to it).

First observe that a combinational conservative-logic network (one with
no feedback loops) can be composed with its inverse to consume all

garbage (Fig. I1.17).

The desired output can be extracted by a “spy circuit” (Fig. 11.18).
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Figure I1.17: Composition of combinational conservative-logic network with
its inverse to consume the garbage. [fig. from Fredkin & Toffoli (1982)]
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Figure I1.18: The “spy circuit” for tapping into the output. Note that in
the diagram the 0 and 1 constant inputs are switched (or, equivalently, the
a and @ outputs are switched). See also the FAN-OUT circuit in Fig. I1.15.
[fig. from Fredkin & Toffoli (1982)]
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Figure I1.19: Garbageless circuit. (Fredkin & Toffoli, 1982)
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Figure I1.20: “The conservative-logic scheme for garbageless computation.
Three data registers are ‘shot’ through a conservative-logic black-box F'. The
register with the argument, x, is returned unchanged; the clean register on
top of the figure, representing an appropriate supply of input constants, is
used as a scratchpad during the computation (cf. the ¢ and g lines in Figure
[I1.19]) but is returned clean at the end of the computation. Finally, the
tokens on the register at the bottom of the figure are rearranged so as to
encode the result y and its complement —y” (Fredkin & Toffoli, 1982)

6. Fig. I1.19 shows the general arrangement for garbageless computation.
This requires the provision of n new constants (n = number output
lines).

€7. Consider the more schematic diagram in Fig. 11.20.
€8. Think of arranging tokens (representing 1-bits) in the input registers,
both to represent the input x, but also a supply of n of them in the
black lower square.
€9. Run the computation.
€10. The input argument tokens have been restored to their initial positions.
The 2n-bit string 00---0011---11 in the lower register has been rear-

ranged to yield the result and its complement yy.

€11. Restoring the 0---01---1 inputs for another computation dissipates
energy.
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Figure I1.21: Overall structure of ballistic computer. (Bennett, 1982)

q12.

Feedback: Finite loops can be unrolled, which shows that they can
be done without dissipation.
(Cf. also that billiard balls can circulate in a frictionless system.)

C.9 Ballistic computation

“Consider a spherical cow moving in a vacuum...”

qL.

.

qs.
9.

Billiard ball model: To illustrate dissipationless ballistic computa-
tion, Fredkin and Toffoli defined a billzard ball model of computation.

It is based on the same assumptions as the classical kinetic theory of
gasses: perfectly elastic spheres and surfaces.
In this case we can think of pucks on frictionless table.

Fig. I1.21 shows the general structure of the billiard ball model.

1s are represented by the presence of a ball at a location, and 0Os by
their absence.
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Figure 11.22: “Billiard ball model realization of the interaction gate.” (Fred-
kin & Toffoli, 1982)
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q7.

qs.
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Input is provided by simultaneously firing balls into the input ports for
the 1s in the argument.

Inside the box the balls ricochet off each other and fixed reflectors,
which performs the computation.

After a fixed time delay, the balls emerging (or not) from the output
ports define the output.

Obviously the number of 1s (balls) is conserved.

The computation is reversible because the laws of motion are reversible.

Interaction gate: Fig. I1.22 shows the realization of the computa-
tional primitive, the interaction gate.

Fig. I1.23 is the symbol for the interaction gate and its inverse.

Universal: The interaction gate is universal because it can compute
both AND and NOT.

Interconnections: However, we must make provisions for arbitrary
interconnections in a planar grid. So need to implement signal crossover
and control timing.
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Figure 11.23: “(a) The interaction gate and (b) its inverse.” (Fredkin &
Toffoli, 1982) Note that the second pq from the bottom should be pg.
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Figure I1.24: “The mirror (indicated by a solid dash) can be used to deflect
a ball’s path (a), introduce a sideways shift (b), introduce a delay (c), and
realize nontrivial crossover (d).” (Fredkin & Toffoli, 1982)

(This is non-trivial crossover; trivial crossover is when two balls cannot
possibly be at the same place at the same time.)

€14. Fig. I1.24 shows mechanisms for realizing these functions.

€15. Fig. I1.25 shows a realization of the Fredkin gate in terms of multiple
interaction gates. (The “bridge” indicates non-trivial crossover.)

§16. Practical problems: Minuscule errors of any sort (position, velocity,
alignment) will accumulate rapidly (by about a factor of 2 at each
collision).

€17. E.g., initial random error of 1/10' in position or velocity (about what
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Figure 11.25: Realization of the Fredkin gate in terms of multiple interaction
gates. [NC]
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would be expected from uncertainty principle) would lead to a com-
pletely unpredictable trajectory after a few dozen collisions.
It will lead to a Maxwell distribution of velocities, as in a gas.

“Even if classical balls could be shot with perfect accuracy into a perfect
apparatus, fluctuating tidal forces from turbulence in the atmosphere
of nearby stars would be enough to randomize their motion within a
few hundred collisions.” (Bennett, 1982, p. 910)

Various solutions have been considered, but they all have limitations.

“In summary, although ballistic computation is consistent with the laws
of classical and quantum mechanics, there is no evident way to prevent
the signals’ kinetic energy from spreading into the computer’s other
degrees of freedom.” (Bennett, 1982, p. 911)

Signals can be restored, but this introduces dissipation.
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Figure I1.26: Implementation of J-K flip-flop. [from FT82)]
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