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C Reversible computing

C.1 Reversible computing as solution

This section is based on Frank (2005).

C.1.a Possible solution

¶1. Notice that the key quantity F
E

in Eqn. II.1 depends on the energy
dissipated as heat.

¶2. The 100k
B

T limit depends on the energy in the signal (necessary to
resist thermal fluctuation causing a bit flip).

¶3. There is nothing to say that information processing has to dissipate
energy; an arbitrarily large amount of it can be recovered for future
operations.

“Arbitrary” in the sense that there is no inherent physical lower bound
on the energy that must be dissipated.

¶4. It becomes a matter of precise energy management, moving it around
in di↵erent patterns, with as little dissipation as possible.

¶5. Indeed, E
sig

can be increased to improve reliability, provided we mini-
mize dissipation of energy.

¶6. This can be accomplished by making the computation logically re-
versible (i.e., each successor state has only one predecessor state).

C.1.b Reversible physics

¶1. All fundamental physical theories are Hamiltonian dynamical systems.

¶2. All such systems are time-reversible. That is, if  (t) is a solution, then
so is  (�t).

¶3. In general, physics is reversible.

¶4. Physical information cannot be lost, be we can lose track of it. This is
entropy: “unknown information residing in the physical state.”
Note how this is fundamentally a matter of information and knowledge.
What is irreversible is the information loss.



50 CHAPTER II. PHYSICS OF COMPUTATION

C.1.c Reversible logic

¶1. To avoid dissipation, don’t erase information. The problem is to keep
track of information that would otherwise be dissipated.

¶2. This is accomplished by making computation logically reversible.

(It is already physically reversible.)

¶3. The information is rearranged and recombined in place. (We will see
lots of examples of how to do this.)

C.1.d Progress

¶1. In 1973, Charles Bennett (IBM) first showed how any computation
could be embedded in an equivalent reversible computation. Rather
than discarding information, it keeps it around so it can later “decom-
pute” it. This was logical reversibility; he did not deal with the problem
of physical reversibility.

¶2. Brownian Computers: Or “Brownian motion machines.” This was
an attempt to suggest a possible physical implementation of reversible
computation.
“the mean free path of the system’s trajectory was much shorter than
the distance between neighboring computational states” (see also [B82]).

¶3. Therefore: “In absence of any energy input, the system progressed
essentially via a random walk, taking an expected time of ⇥(n2) to
advance n steps.”

¶4. A small energy input biases the process in the forward direction, so
that it precedes linearly, but still very slowly.

¶5. Compare “DNA polymerization, which (under normal conditions, such
as during cell division) proceeds at a rate on the order of only 1,000
nucleotides per second, with a dissipation of ⇠ 40k

B

T per step.”
This is about 1 eV (see ¶7 below).
Note that DNA replication includes error-correcting operations.

¶6. Energy coe�cient: Since “asymptotically reversible processes (in-
cluding the DNA example) proceed forward at an adjustable speed,
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proportional to the energy dissipated per step,” define an energy coef-
ficient:

c
E

def

= E
diss

/f
op

,

“where E
diss

is the energy dissipated per operation, and f
op

is the fre-
quency of operations.”

¶7. “In Bennett’s original DNA process, the energy coe�cient comes out
to about c

E

= 1eV/kHz.”
That is, for DNA, c

E

⇡ 40kT/kHz = 40 ⇥ 26 meV/kHz ⇡ 1 eV/kHz.

¶8. But it would be desirable to operate at GHz frequencies and energy
dissipation below k

B

T .
Recall that at room temp. k

B

T ⇡ 26 meV (Sec. A ¶6, p. 31).
So we need energy coe�cients much lower than DNA.
This is an issue, of course, for molecular computation.

¶9. Information Mechanics group: In 1970s, Ed Fredkin, Tommaso
To↵oli, et al. at MIT.

¶10. Ballistic computing: F & T described computation with idealized,
perfectly elastic balls reflecting o↵ barriers. Minimum dissipation, pro-
pelled by (conserved) momentum. Unrealistic. Later we will look at it
briefly.

¶11. They suggested a more realistic implementation involving “charge pack-
ets bouncing around along inductive paths between capacitors.”

¶12. Richard Feynman (CalTech) had been interacting with IM group, and
developed “a full quantum model of a serial reversible computer” (Feyn-
man, 1986).

¶13. Adiabatic circuit: Since 1980s there has been work in adiabatic cir-
cuits, esp. in 1990s.
An adiabatic process takes place without input or dissipation of energy.
Adiabatic circuits minimize energy use by obeying certain circuit design
rules. “[A]rbitrary, pipelined, sequential logic could be implemented
in a fully-reversible fashion, limited only by the energy coe�cients and
leakage currents of the underlying transistors.”
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¶14. As of 2004, est. c
E

= 3 meV/kHz, about 250⇥ less than DNA.

¶15. “It is di�cult to tell for certain, but a wide variety of post-transistor
device technologies have been proposed . . . that have energy coe�-
cients ranging from 105 to 1012 times lower than present-day CMOS!
This translates to logic circuits that could run at GHz to THz frequen-
cies, with dissipation per op that is still less (in some cases orders of
magnitude less) than the VNL bound of k

B

T ln 2 . . . that applies to
all irreversible logic technologies. Some of these new device ideas have
even been prototyped in laboratory experiments [2001].”

¶16. “Fully-reversible processor architectures [1998] and instruction sets [1999]
have been designed and implemented in silicon.”

¶17. But this is more the topic of a CpE course. . .

C.2 Physical assumptions of computing

These lectures are based primarily on Edward Fredkin and Tommaso To↵oli’s
“Conservative logic” (Fredkin & To↵oli, 1982).

C.2.a Dissipative logic

¶1. The following physical principles are implicit in the existing theory of
computation.

¶2. P1. The speed of propagation of information is bounded: No
action at a distance.

¶3. P2. The amount of information which can be encoded in the
state of a finite system is bounded: This is a consequence of
thermodynamics and quantum theory.

¶4. P3. It is possible to construct macroscopic, dissipative physi-
cal devices which perform in a recognizable and reliable way
the logical functions AND, NOT, and FAN-OUT: This is an
empirical fact.
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C.2.b Conservative logic

¶1. “Computation is based on the storage, transmission, and processing of
discrete signals.”

¶2. Only macroscopic systems are irreversible, so as we go to the micro-
scopic level, we need to understand reversible logic. This leads to new
physical principles.

¶3. P4. Identity of transmission and storage: In a relativistic sense,
they are identical.

¶4. P5. Reversibility: Because microscopic physics is reversible.

¶5. P6. One-to-one composition: Physically, fan-out is not trivial, so
we cannot assume that one function output can be substituted for any
number of input variables.
We have to treat fan-out as a specific signal-processing element.

¶6. P7. Conservation of additive quantities: It can be shown that
in a reversible systems there are a number of independent conserved
quantities.

¶7. In many systems they are additive over the subsystems.

¶8. P8. The topology of space-time is locally Euclidean: “Intu-
itively, the amount of ‘room’ available as one moves away from a certain
point in space increases as a power (rather than as an exponential) of
the distance from that point, thus severely limiting the connectivity of
a circuit.”

¶9. What are su�cient primitives for conservative computation?
The unit wire and the Fredkin gate.

C.3 Unit wire

¶1. Information storage in one reference frame may be information trans-
mission in another.
E.g., leaving a note on a table in an airplane (at rest with respect to
earth or not, or to sun, etc.).
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(where the superscript denotes the abstract "time" in which events take place in a discrete dynamical 
system), and is graphically represented as in Figure 1. The value that is present at a wire’s input at time t 
(and at its output at time t + 1) is called the state of the wire at time t. 
From the unit wire one obtains by composition more general wires of arbitrary length. Thus, a wire of length 
i (i ! 1) represents a space-time signal path whose ends are separated by an interval of i time units. For the 
moment we shall not concern ourselves with the specific spatial layout of such a path (cf. constraint P8). 
Observe that the unit wire is invertible, conservative (i.e., it conserves in the output the number of 0's and l's 
that are present at the input), and is mapped into its inverse by the transformation t -t. 

2.4. Conservative-Logic Gates; The Fredkin Gate. Having introduced a primitive whose role 
is to represent signals, we now need primitives to represent in a stylized way physical computing events. 

 
Figure 1.  The unit wire. 

A conservative-logic gate is any Boolean function that is invertible and conservative (cf. Assumptions P5 
and P7 above). It is well known that, under the ordinary rules of function composition (where fan-out is 
allowed), the two-input NAND gate constitutes a universal primitive for the set of all Boolean functions. In 
conservative logic, an analogous role is played by a single signal-processing primitive, namely, the Fredkin 
gate, defined by the table 

u x1 x2 v y1  y2 
0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 0 0 1 
0 1 1 0 1 1 (2) 
1 0 0 1 0 0 
1 0 1 1 0 1 
1 1 0 1 1 0 
1 1 1 1 1 1 

and graphically represented as in Figure 2a. This computing element can be visualized as a device that 
performs conditional crossover of two data signals according to the value of a control signal (Figure 2b). 
When this value is 1 the two data signals follow parallel paths; when 0, they cross over. Observe that the 
Fredkin gate is nonlinear and coincides with its own inverse. 

 
Figure 2.  (a) Symbol and (b) operation of the Fredkin gate. 

In conservative logic, all signal processing is ultimately reduced to conditional routing of signals. Roughly 
speaking, signals are treated as unalterable objects that can be moved around in the course of a computation 
but never created or destroyed. For the physical significance of this approach, see Section 6. 

2.5. Conservative-Logic Circuits. Finally, we shall introduce a scheme for connecting signals, 
represented by unit wires, with events, represented by conservative-logic gates. 

Figure II.9: Symbol for unit wire. (Fredkin & To↵oli, 1982)

(where the superscript denotes the abstract "time" in which events take place in a discrete dynamical 
system), and is graphically represented as in Figure 1. The value that is present at a wire’s input at time t 
(and at its output at time t + 1) is called the state of the wire at time t. 
From the unit wire one obtains by composition more general wires of arbitrary length. Thus, a wire of length 
i (i ! 1) represents a space-time signal path whose ends are separated by an interval of i time units. For the 
moment we shall not concern ourselves with the specific spatial layout of such a path (cf. constraint P8). 
Observe that the unit wire is invertible, conservative (i.e., it conserves in the output the number of 0's and l's 
that are present at the input), and is mapped into its inverse by the transformation t -t. 

2.4. Conservative-Logic Gates; The Fredkin Gate. Having introduced a primitive whose role 
is to represent signals, we now need primitives to represent in a stylized way physical computing events. 

 
Figure 1.  The unit wire. 

A conservative-logic gate is any Boolean function that is invertible and conservative (cf. Assumptions P5 
and P7 above). It is well known that, under the ordinary rules of function composition (where fan-out is 
allowed), the two-input NAND gate constitutes a universal primitive for the set of all Boolean functions. In 
conservative logic, an analogous role is played by a single signal-processing primitive, namely, the Fredkin 
gate, defined by the table 

u x1 x2 v y1  y2 
0 0 0 0 0 0 
0 0 1 0 1 0 
0 1 0 0 0 1 
0 1 1 0 1 1 (2) 
1 0 0 1 0 0 
1 0 1 1 0 1 
1 1 0 1 1 0 
1 1 1 1 1 1 

and graphically represented as in Figure 2a. This computing element can be visualized as a device that 
performs conditional crossover of two data signals according to the value of a control signal (Figure 2b). 
When this value is 1 the two data signals follow parallel paths; when 0, they cross over. Observe that the 
Fredkin gate is nonlinear and coincides with its own inverse. 

 
Figure 2.  (a) Symbol and (b) operation of the Fredkin gate. 

In conservative logic, all signal processing is ultimately reduced to conditional routing of signals. Roughly 
speaking, signals are treated as unalterable objects that can be moved around in the course of a computation 
but never created or destroyed. For the physical significance of this approach, see Section 6. 

2.5. Conservative-Logic Circuits. Finally, we shall introduce a scheme for connecting signals, 
represented by unit wires, with events, represented by conservative-logic gates. 

Figure II.10: “(a) Symbol and (b) operation of the Fredkin gate.” (Fredkin
& To↵oli, 1982)

¶2. The unit wire moves one bit of information from one space-time point
to another space-time point separated by one unit of time. See Fig.
II.9.

¶3. State: “The value that is present at a wire’s input at time t (and at
its output at time t+ 1) is called the state of the wire at time t.”

¶4. It is invertible and conservative (since it conserves the number of 0s
and 1s in its input).
(Note that there are mathematically reversible functions that are not
conservative, e.g., Not.)

C.4 Fredkin gate

¶1. Conservative logic gate: Any Boolean function that is invertible
and conservative.

¶2. Conditional rerouting: Since the number of 1s and 0s is conserved,
conservative computing is essentially conditional rerouting

¶3. Rearranging vs. rewriting: Conventional models of computation
are based on rewriting
(e.g., TMs, lambda calculus, register machines, term rewriting systems,
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Figure II.11: Alternative notation for Fredkin gate.

Post and Markov productions).
But we have seen that overwriting dissipates energy (and is non-conservative).

¶4. In conservative logic we rearrange bits without creating or destroying
them.
(No infinite “bit supply” and no “bit bucket.”)

¶5. Fredkin gate: The Fredkin gate is a conditional swap operation (also
called CSWAP):

(1, a, b) 7! (1, a, b),

(0, a, b) 7! (0, b, a).

The first input is a control signal and the other two are data signals.
Here, 0 signals a swap, but some authors use 1 to signal a swap.
See Fig. II.10 and Fig. II.13. Fig. II.11 shows an alternative notation
for the Fredkin gate.

¶6. Note that it is reversible and conservative.

¶7. Universal: The Fredkin gate is a universal Boolean primitive for con-
servative logic.

C.5 Conservative logic circuits

¶1. “A conservative-logic circuit is a directed graph whose nodes are conservative-
logic gates and whose arcs are wires of any length [Fig. II.12].”
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A conservative-logic circuit is a directed graph whose nodes are conservative-logic gates and whose arcs are 
wires of any length (cf. Figure 3). 

 
Figure 3.  (a) closed and (b) open conservative-logic circuits. 

Any output of a gate can be connected only to the input of a wire, and sirnilarly any input of a gate only to 
the output of a wire. The interpretation of such a circuit in terms of conventional sequential computation is 
immediate, as the gate plays the role of an "instantaneous" combinational element and the wire that of a 
delay element embedded in an interconnection line. In a closed conservative-logic circuit, all inputs and 
outputs of any elements are connected within the circuit (Figure 3a). Such a circuit corresponds to what in 
physics is called a a closed (or isolated) system. An open conservative-logic circuit possesses a number of 
external input and output ports (Figure 3b). In isolation, such a circuit might be thought of as a transducer 
(typically, with memory) which, depending on its initial state, will respond with a particular Output 
sequence to any particular input sequence. However, usually such a circuit will be thought of as a portion of 
a larger circuit; thence the notation for input and output ports (Figure 3b), which is suggestive of, 
respectively, the trailing and the leading edge of a wire. Observe that in conservative-logic circuits the 
number of output ports always equals that of input ones. 
The junction between two adjacent unit wires can be formally treated as a node consisting of a trivial 
conservative-logic gate, namely, the identity gate. Inwhat follows, whenever we speak of the realizability of 
a function in terms of a certain set of conservative-logic primitives, the unit wire and the identity gate will be 
tacitly assumed to be included in this set. 
A conservative-logic circuit is a time-discrete dynamical system. The unit wires represent the system’s 
individual state variables, while the gates (including, of course, any occurrence of the identity gate) 
collectively represent the system’s transition function. The number N of unit wires that are present in the 
circuit may be thought of as the number of degrees of freedom of the system. Of these N wires, at any 
moment N1 will be in state 1, and the remaining N0 (= N - N1) will be in state 0. The quantity N1 is an 
additive function of the system’s state, i.e., is defined for any portion of the circuit and its value for the 
whole circuit is the sum of the individual contributions from all portions. Moreover, since both the unit wire 
and the gates return at their outputs as many l’s as are present at their inputs, the quantity N1 is an integral of 
the motion of the system, i.e., is constant along any trajectory. (Analogous considerations apply to the 
quantity N0, but, of course, N0 and N1 are not independent integrals of the motion.) It is from this 
"conservation principle" for the quantities in which signals are encoded that conservative logic derives its 
name. 
It must be noted that reversibility (in the sense of mathematical invertibility) and conservation are 
independent properties, that is, there exist computing circuits that are reversible but not "bit-conserving," 
(Toffoli, 1980) and vice versa (Kinoshita, 1976). 

Figure II.12: “(a) closed and (b) open conservative-logic circuits.” (Fredkin
& To↵oli, 1982)

3. COMPUTATION IN CONSERVATIVE-LOGIC CIRCUITS; CONSTANTS 
AND GARBAGE 
In Figure 4a we have expressed the output variables of the Fredkin gate as explicit functions of the input 
variables. The overall functional relation-ship between input and output is, as we have seen, invertible. On 
the other hand, the functions that one is interested in computing are often noninvertible. Thus, special 
provisions must be made in the use of the Fredkin gate (or, for that matter, of any invertible function that is 
meant to be a general-purpose signal-processing primitive) in order to obtain adequate computing power. 

Suppose, for instance, that one desires to compute the AND function, which is not invertible. In Figure 4b 
only inputs u and x1 are fed with arbitrary values a and b, while x2 is fed with the constant value 0. In this 
case, the y1 output will provide the desired value ab ("a AND b"), while the other two outputs v and y2 will 
yield the "unrequested" values a and ¬ab. Thus, intuitively, the AND function can be realized by means of 
the Fredkin gate as long as one is willing to supply "constants" to this gate alongside with the argument, and 
accept "garbage" from it alongside with the result. This situation is so common in computation with 
invertible primitives that it will be convenient to introduce some terminology in order to deal with it in a 
precise way. 

 
Figure 4. Behavior of the Fredkin gate (a) with unconstrained inputs, and (b) with x2 constrained to the 

value 0, thus realizing the AND function. 

 
Figure 5.  Realization of f by !using source and sink. The function : (c, x) (y, g) is chosen so that, for a 

particular value of c, y = f(x). 

Terminology: source, sink, constants, garbage. Given any finite function , one obtains a new function f 
"embedded" in it by assigning specified values to certain distinguished input lines (collectively called the 
source) and disregarding certain distinguished output lines (collectively called the sink). The remaining 
input lines will constitute the argument, and the remaining output lines, the result. This construction (Figure 
5) is called a realization of f by means of !using source and sink. In realizing f by means of , the source 
lines will be fed with constant values, i.e., with values that do not depend on the argument. On the other 
hand, the sink lines in general will yield values that depend on the argument, and thus cannot be used as 
input constants for a new computation. Such values will be termed garbage. (Much as in ordinary life, this 

Figure II.13: “Behavior of the Fredkin gate (a) with unconstrained inputs,
and (b) with x

2

constrained to the value 0, thus realizing the AND function.”
(Fredkin & To↵oli, 1982)
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3. COMPUTATION IN CONSERVATIVE-LOGIC CIRCUITS; CONSTANTS 
AND GARBAGE 
In Figure 4a we have expressed the output variables of the Fredkin gate as explicit functions of the input 
variables. The overall functional relation-ship between input and output is, as we have seen, invertible. On 
the other hand, the functions that one is interested in computing are often noninvertible. Thus, special 
provisions must be made in the use of the Fredkin gate (or, for that matter, of any invertible function that is 
meant to be a general-purpose signal-processing primitive) in order to obtain adequate computing power. 

Suppose, for instance, that one desires to compute the AND function, which is not invertible. In Figure 4b 
only inputs u and x1 are fed with arbitrary values a and b, while x2 is fed with the constant value 0. In this 
case, the y1 output will provide the desired value ab ("a AND b"), while the other two outputs v and y2 will 
yield the "unrequested" values a and ¬ab. Thus, intuitively, the AND function can be realized by means of 
the Fredkin gate as long as one is willing to supply "constants" to this gate alongside with the argument, and 
accept "garbage" from it alongside with the result. This situation is so common in computation with 
invertible primitives that it will be convenient to introduce some terminology in order to deal with it in a 
precise way. 

 
Figure 4. Behavior of the Fredkin gate (a) with unconstrained inputs, and (b) with x2 constrained to the 

value 0, thus realizing the AND function. 

 
Figure 5.  Realization of f by !using source and sink. The function : (c, x) (y, g) is chosen so that, for a 

particular value of c, y = f(x). 

Terminology: source, sink, constants, garbage. Given any finite function , one obtains a new function f 
"embedded" in it by assigning specified values to certain distinguished input lines (collectively called the 
source) and disregarding certain distinguished output lines (collectively called the sink). The remaining 
input lines will constitute the argument, and the remaining output lines, the result. This construction (Figure 
5) is called a realization of f by means of !using source and sink. In realizing f by means of , the source 
lines will be fed with constant values, i.e., with values that do not depend on the argument. On the other 
hand, the sink lines in general will yield values that depend on the argument, and thus cannot be used as 
input constants for a new computation. Such values will be termed garbage. (Much as in ordinary life, this 

Figure II.14: “Realization of f by � using source and sink. The function
� : (c, x) 7! (y, g) is chosen so that, for a particular value of c, y = f(x).”
(Fredkin & To↵oli, 1982)

¶2. We can think of the gate as instantaneous and the unit wire as being
a unit delay, of which we can make a sequence (or imagine intervening
identity gates).

¶3. Closed vs. open: A closed circuit is a closed (or isolated) physical
system.
An open circuit has external inputs and outputs.

¶4. The number of outputs must equal the number of inputs.

¶5. It may be part of a larger conservative circuit, or connected to the
environment.

¶6. Discrete-time dynamical system: A conservative-logic circuit is a
discrete-time dynamical system.

¶7. Degrees of freedom: The number N of unit wires in the circuit is
its number of DoF.
The numbers of 0s and 1s at any time is conserved, N = N

0

+N
1

.

C.6 Constants and garbage

¶1. The Fredkin gate can be used to compute non-invertible functions such
as AND, if we are willing to provide appropriate constants (called “an-
cillary values”) and to accept unwanted outputs (see Fig. II.13).
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garbage is not utterly worthless material. In Section 7, we shall show that thorough "recycling" of garbage is 
not only possible, but also essential for achieving certain important goals.) 

By a proper selection of source and sink lines and choice of constants, it is possible to obtain from the 
Fredkin gate other elementary Boolean functions, such as OR, NOT, and FAN-OUT (Figure 6). In order to 
synthesize more complex functions one needs circuits containing several occurrences of the Fredkin gate. 
For example, Figure 7 illustrates a l-line-to-4-line demultiplexer. Because of the delays represented by the 
wires, this is formally a sequential network. However, since no feedback is present and all paths from the 
argument to the result traverse the same number of unit wires, the analysis of this circuit is substantially 
identical to that of a combinational network.4 

 
Figure 6.  Realization of the (a) OR, (b) NOT, and (c) FAN-OUT functions by means of the Fredkin gate. 

 
Figure 7.  1-line-to 4-line demultiplexer. The "address" lines A0, A1 specify to which of the four outputs 

Y0,....,Y3 the "data" signal X is to be routed. (Note that here the sink lines happen to echo the address lines.) 

                                                      
4 The composition rules of conservative logic force one to explicitly consider the distributed delays 
encountered in routing a signal from one processing element to the next. In conventional sequential 
networks propagation delays are not explicitly associated with individual gates or wires; rather, they are 
implicitly lumped in the so-called "delay elements." Yet, in these networks the delay elements already have 
an explicit formal role, related to proper causal ordering rather than to timing per se (Toffoli, 1980). This 
confusion about the role of delay elements is avoided in conservative logic. 

Figure II.15: “Realization of the (a) OR, (b) NOT, and (c) FAN-OUT func-
tions by means of the Fredkin gate.” (Fredkin & To↵oli, 1982)

garbage is not utterly worthless material. In Section 7, we shall show that thorough "recycling" of garbage is 
not only possible, but also essential for achieving certain important goals.) 

By a proper selection of source and sink lines and choice of constants, it is possible to obtain from the 
Fredkin gate other elementary Boolean functions, such as OR, NOT, and FAN-OUT (Figure 6). In order to 
synthesize more complex functions one needs circuits containing several occurrences of the Fredkin gate. 
For example, Figure 7 illustrates a l-line-to-4-line demultiplexer. Because of the delays represented by the 
wires, this is formally a sequential network. However, since no feedback is present and all paths from the 
argument to the result traverse the same number of unit wires, the analysis of this circuit is substantially 
identical to that of a combinational network.4 

 
Figure 6.  Realization of the (a) OR, (b) NOT, and (c) FAN-OUT functions by means of the Fredkin gate. 

 
Figure 7.  1-line-to 4-line demultiplexer. The "address" lines A0, A1 specify to which of the four outputs 

Y0,....,Y3 the "data" signal X is to be routed. (Note that here the sink lines happen to echo the address lines.) 

                                                      
4 The composition rules of conservative logic force one to explicitly consider the distributed delays 
encountered in routing a signal from one processing element to the next. In conventional sequential 
networks propagation delays are not explicitly associated with individual gates or wires; rather, they are 
implicitly lumped in the so-called "delay elements." Yet, in these networks the delay elements already have 
an explicit formal role, related to proper causal ordering rather than to timing per se (Toffoli, 1980). This 
confusion about the role of delay elements is avoided in conservative logic. 

Figure II.16: “1-line-to 4-line demultiplexer. The ‘address’ lines A
0

, A
1

spec-
ify to which of the four outputs Y

0

, . . . , Y
3

the ‘data’ signal X is to be routed.
(Note that here the sink lines happen to echo the address lines.)” (Fredkin
& To↵oli, 1982)

¶2. In general, one function can be embedded in another by providing ap-
propriate constants from a source and ignoring some of the outputs,
the sink, which are considered garbage.

¶3. However, this garbage cannot be thrown away (which would dissipate
energy), so it must be recycled in some way.

C.7 Universality

¶1. OR, NOT, and FAN-OUT: Fig. II.15 shows Fredkin realizations of
other common gates.
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¶2. Demultiplexer example: Fig. II.16 shows a 1-line to 4-line demulti-
plexer.

¶3. Hence you can convert conventional logic circuits into conservative cir-
cuits, but the process is not very e�cient. It’s better to design the
conservative circuit from scratch.

¶4. Universality: “any computation that can be carried out by a con-
ventional sequential network can also be carried out by a suitable
conservative-logic network, provided that an external supply of con-
stants and an external drain for garbage are available.”
(Will see how to relax these constraints: Sec. C.8)

C.8 Garbageless conservative logic

¶1. To reuse the apparatus for a new computation, we will have to throw
away the garbage and provide fresh constants, both of which will dis-
sipate energy.

¶2. Exponential growth of garbage: This is a significant problem if
dissipative circuits are naively translated to conservative circuits be-
cause:
(1) the amount of garbage tends to increase with the number of gates,
and
(2) with the naive translation, the number of gates tends to increase
exponentially with the number of input lines.
“This is so because almost all boolean functions are ‘random’, i.e., can-
not be realized by a circuit simpler than one containing an exhaustive
look-up table.”

¶3. However there is a way to make the garbage the same size as the input
(in fact, identical to it).

¶4. First observe that a combinational conservative-logic network (one with
no feedback loops) can be composed with its inverse to consume all
garbage (Fig. II.17).

¶5. The desired output can be extracted by a “spy circuit” (Fig. II.18).
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Consider now the network -1,which is the inverse of  (Figure 20b). If g and y are used as inputs for -1 this 
network will "undo" ’s computation and return c and x as outputs. By combining the two networks, as in 
Figure 21, we obtain a new network which obviously computes the identity function and thus looks, in terms 
of input-output behavior, just like a bundle of parallel wires. Not only the argument x but also the constants 
c are returned unchanged. Yet, buried in the middle of this network there appears the desired result y. Our 
next task will be to "observe" this value without disturbing the system. 
In a conservative-logic circuit, consider an arbitrary internal line carrying the value a (Figure 22a). The 
"spy" device of Figure 22b, when fed with a 0 and a 1, allows one to extract from the circuit a copy of a, 
together with its complement, ¬a without interfering in any way with the ongoing computation. By applying 
this device to every individual line of the result y of Figure 21, we obtain the complete circuit shown in 
Figure 23. As before, the result y produced by !is passed on to -1 I; however, a copy of y (as well as its 
complement ¬y) is now available externally. The "price" for each of these copies is merely the supply of n 
new constants (where n is the width of the result). 

 
Figure 20.  (a) Computation of y = f(x) by means of a combinational conservative-logic network . (b) This 

computation is "undone" by the inverse network, -1 

 
Figure 21.  The network obtained by combining and -1 'looks from the outside like a bundle of parallel 

wires. The value y(=f(x)) is buried in the middle. 

The remarkable achievements of this construction are discussed below with the help of the schematic 
representation of Figure 24. In this figure, it will be convenient to visualize the input registers as "magnetic 
bulletin boards," in which identical, undestroyable magnetic tokens can be moved on the board surface. A 
token at a given position on the board represents a 1, while the absence of a token at that position represents 
a 0. The capacity of a board is the maximum number of tokens that can be placed on it. Three such registers 
are sent through a "black box" F, which represents the conservative-logic circuit of Figure 23, and when they 
reappear some of the tokens may have been moved, but none taken away or added. Let us follow this 
process, register by register. 

 
Figure 22.  The value a carried by an arbitrary line (a) can be inspected in a nondestructive way by the "spy" 

device in (b). 

Figure II.17: Composition of combinational conservative-logic network with
its inverse to consume the garbage. [fig. from Fredkin & To↵oli (1982)]

Consider now the network -1,which is the inverse of  (Figure 20b). If g and y are used as inputs for -1 this 
network will "undo" ’s computation and return c and x as outputs. By combining the two networks, as in 
Figure 21, we obtain a new network which obviously computes the identity function and thus looks, in terms 
of input-output behavior, just like a bundle of parallel wires. Not only the argument x but also the constants 
c are returned unchanged. Yet, buried in the middle of this network there appears the desired result y. Our 
next task will be to "observe" this value without disturbing the system. 
In a conservative-logic circuit, consider an arbitrary internal line carrying the value a (Figure 22a). The 
"spy" device of Figure 22b, when fed with a 0 and a 1, allows one to extract from the circuit a copy of a, 
together with its complement, ¬a without interfering in any way with the ongoing computation. By applying 
this device to every individual line of the result y of Figure 21, we obtain the complete circuit shown in 
Figure 23. As before, the result y produced by !is passed on to -1 I; however, a copy of y (as well as its 
complement ¬y) is now available externally. The "price" for each of these copies is merely the supply of n 
new constants (where n is the width of the result). 

 
Figure 20.  (a) Computation of y = f(x) by means of a combinational conservative-logic network . (b) This 

computation is "undone" by the inverse network, -1 

 
Figure 21.  The network obtained by combining and -1 'looks from the outside like a bundle of parallel 

wires. The value y(=f(x)) is buried in the middle. 

The remarkable achievements of this construction are discussed below with the help of the schematic 
representation of Figure 24. In this figure, it will be convenient to visualize the input registers as "magnetic 
bulletin boards," in which identical, undestroyable magnetic tokens can be moved on the board surface. A 
token at a given position on the board represents a 1, while the absence of a token at that position represents 
a 0. The capacity of a board is the maximum number of tokens that can be placed on it. Three such registers 
are sent through a "black box" F, which represents the conservative-logic circuit of Figure 23, and when they 
reappear some of the tokens may have been moved, but none taken away or added. Let us follow this 
process, register by register. 

 
Figure 22.  The value a carried by an arbitrary line (a) can be inspected in a nondestructive way by the "spy" 

device in (b). 
Figure II.18: The “spy circuit” for tapping into the output. Note that in
the diagram the 0 and 1 constant inputs are switched (or, equivalently, the
a and a outputs are switched). See also the FAN-OUT circuit in Fig. II.15.
[fig. from Fredkin & To↵oli (1982)]

 
Figure 23.  A "garbageless" circuit for computing the function y = f(x). Inputs C1,..., Ch and X1,…., Xm are 

returned unchanged, while the constants 0,...,0 and 1,..., 1 in the lower part of the circuits are replaced by the 
result, y1,...., yn and its complement, ¬y1,...., ¬yn 

 

Figure 24.  The conservative-logic scheme for garbageless computation. Three data registers are "shot" 
through a conservative-logic black-box F. The register with the argument, x, is returned unchanged; the 

clean register on top of the figure, representing an appropriate supply of input constants, is used as a 
scratchpad during the computation (cf. the c and g lines in Figure 23) but is returned clean at the end of the 

computation. Finally, the tokens on the register at the bottom of the figure are rearranged so as to encode the 
result y and its complement ¬y 

(a) The "argument" register, containing a given arrangement of tokens x, is returned unchanged. The 
capacity of this register is m, i.e., the number of bits in x. 

(b) A clean "scratchpad register" with a capacity of h tokens is supplied, and will be returned clean. 
(This is the main supply of constants-namely, c1, . . . , ch in Figure 23.) Note that a clean register means one 
with all 0's (i.e., no tokens), while we used both 0's and l's as constants, as needed, in the construction of 
Figure 10. However, a proof due to N. Margolus shows that all 0's can be used in this register without loss of 
generality. In other words, the essential function of this register is to provide the computation with spare 
room rather than tokens. 

(c) Finally, we supply a clean "result" register of capacity 2n (where n is the number of bits in y). For 
this register, clean means that the top half is empty and the bottom half completely filled with tokens. The 

Figure II.19: Garbageless circuit. (Fredkin & To↵oli, 1982)
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Figure 23.  A "garbageless" circuit for computing the function y = f(x). Inputs C1,..., Ch and X1,…., Xm are 

returned unchanged, while the constants 0,...,0 and 1,..., 1 in the lower part of the circuits are replaced by the 
result, y1,...., yn and its complement, ¬y1,...., ¬yn 

 

Figure 24.  The conservative-logic scheme for garbageless computation. Three data registers are "shot" 
through a conservative-logic black-box F. The register with the argument, x, is returned unchanged; the 

clean register on top of the figure, representing an appropriate supply of input constants, is used as a 
scratchpad during the computation (cf. the c and g lines in Figure 23) but is returned clean at the end of the 

computation. Finally, the tokens on the register at the bottom of the figure are rearranged so as to encode the 
result y and its complement ¬y 

(a) The "argument" register, containing a given arrangement of tokens x, is returned unchanged. The 
capacity of this register is m, i.e., the number of bits in x. 

(b) A clean "scratchpad register" with a capacity of h tokens is supplied, and will be returned clean. 
(This is the main supply of constants-namely, c1, . . . , ch in Figure 23.) Note that a clean register means one 
with all 0's (i.e., no tokens), while we used both 0's and l's as constants, as needed, in the construction of 
Figure 10. However, a proof due to N. Margolus shows that all 0's can be used in this register without loss of 
generality. In other words, the essential function of this register is to provide the computation with spare 
room rather than tokens. 

(c) Finally, we supply a clean "result" register of capacity 2n (where n is the number of bits in y). For 
this register, clean means that the top half is empty and the bottom half completely filled with tokens. The 

Figure II.20: “The conservative-logic scheme for garbageless computation.
Three data registers are ‘shot’ through a conservative-logic black-box F . The
register with the argument, x, is returned unchanged; the clean register on
top of the figure, representing an appropriate supply of input constants, is
used as a scratchpad during the computation (cf. the c and g lines in Figure
[II.19]) but is returned clean at the end of the computation. Finally, the
tokens on the register at the bottom of the figure are rearranged so as to
encode the result y and its complement ¬y” (Fredkin & To↵oli, 1982)

¶6. Fig. II.19 shows the general arrangement for garbageless computation.
This requires the provision of n new constants (n = number output
lines).

¶7. Consider the more schematic diagram in Fig. II.20.

¶8. Think of arranging tokens (representing 1-bits) in the input registers,
both to represent the input x, but also a supply of n of them in the
black lower square.

¶9. Run the computation.

¶10. The input argument tokens have been restored to their initial positions.
The 2n-bit string 00 · · · 0011 · · · 11 in the lower register has been rear-
ranged to yield the result and its complement yȳ.

¶11. Restoring the 0 · · · 01 · · · 1 inputs for another computation dissipates
energy.
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Figure II.21: Overall structure of ballistic computer. (Bennett, 1982)

¶12. Feedback: Finite loops can be unrolled, which shows that they can
be done without dissipation.
(Cf. also that billiard balls can circulate in a frictionless system.)

C.9 Ballistic computation

“Consider a spherical cow moving in a vacuum. . . ”

¶1. Billiard ball model: To illustrate dissipationless ballistic computa-
tion, Fredkin and To↵oli defined a billiard ball model of computation.

¶2. It is based on the same assumptions as the classical kinetic theory of
gasses: perfectly elastic spheres and surfaces.
In this case we can think of pucks on frictionless table.

¶3. Fig. II.21 shows the general structure of the billiard ball model.

¶4. 1s are represented by the presence of a ball at a location, and 0s by
their absence.
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Figure 14  Billiard ball model realization of the interaction gate. 

All of the above requirements are met by introducing, in addition to collisions between two balls, collisions 
between a ball and a fixed plane mirror. In this way, one can easily deflect the trajectory of a ball (Figure 
15a), shift it sideways (Figure 15b), introduce a delay of an arbitrary number of time steps (Figure 1 Sc), and 
guarantee correct signal crossover (Figure 15d). Of course, no special precautions need be taken for trivial 
crossover, where the logic or the timing are such that two balls cannot possibly be present at the same 
moment at the crossover point (cf. Figure 18 or 12a). Thus, in the billiard ball model a conservative-logic 
wire is realized as a potential ball path, as determined by the mirrors. 

Note that, since balls have finite diameter, both gates and wires require a certain clearance in order to 
function properly. As a consequence, the metric of the space in which the circuit is embedded (here, we are 
considering the Euclidean plane) is reflected in certain circuit-layout constraints (cf. P8, Section 2). 
Essentially, with polynomial packing (corresponding to the Abelian-group connectivity of Euclidean space) 
some wires may have to be made longer than with exponential packing (corresponding to an abstract space 
with free-group connectivity) (Toffoli, 1977). 

 
Figure 15.  The mirror (indicated by a solid dash) can be used to deflect a ball’s path (a), introduce a 

sideways shift (b), introduce a delay (c), and realize nontrivial crossover (d). 

 
Figure 16.  The switch gate and its inverse. Input signal x is routed to one of two output paths depending on 

the value of the control signal, C. 

Figure II.22: “Billiard ball model realization of the interaction gate.” (Fred-
kin & To↵oli, 1982)

¶5. Input is provided by simultaneously firing balls into the input ports for
the 1s in the argument.

¶6. Inside the box the balls ricochet o↵ each other and fixed reflectors,
which performs the computation.

¶7. After a fixed time delay, the balls emerging (or not) from the output
ports define the output.

¶8. Obviously the number of 1s (balls) is conserved.

¶9. The computation is reversible because the laws of motion are reversible.

¶10. Interaction gate: Fig. II.22 shows the realization of the computa-
tional primitive, the interaction gate.

¶11. Fig. II.23 is the symbol for the interaction gate and its inverse.

¶12. Universal: The interaction gate is universal because it can compute
both AND and NOT.

¶13. Interconnections: However, we must make provisions for arbitrary
interconnections in a planar grid. So need to implement signal crossover
and control timing.
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Figure 12.  (a) Balls of radius l/sqrt(2) traveling on a unit grid. (b) Right-angle elastic collision between two 

balls. 

 
Figure 13.  (a) The interaction gate and (b) its inverse. 

6.2. The Interaction Gate. The interaction gate is the conservative-logic primitive defined by Figure 
13a, which also assigns its graphical representation.7 
In the billiard ball model, the interaction gate is realized simply as the potential locus of collision of two 
balls. With reference to Figure 14, let p, q be the values at a certain instant of the binary variables associated 
with the two points P, Q, and consider the values-four time steps later in this particular example-of the 
variables associated with the four points A, B, C, D. It is clear that these values are, in the order shown in the 
figure, pq, ¬pq, p¬q; and pq. In other words, there will be a ball at A if and only if there was a ball at P and 
one at Q; similarly, there will be a ball at B if and only if there was a ball at Q and none at P; etc. 

6.3. Interconnection; Timing and Crossover; The Mirror. Owing to its AND and NOT 
capabilities, the interaction gate is clearly a universal logic primitive (as explained in Section 5, we assume 
the availability of input constants). To verify that these capabilities are retained in the billiard ball model, 
one must make sure that one can realize the appropriate interconnections, i.e., that one can suitably route 
balls from one collision locus to another and maintain proper timing. In particular, since we are considering 
a planar grid, one must provide a way of performing signal crossover. 

                                                      
7 Note that the interaction gate has four output lines but only four (rather than 24) output states-in other 
words, the output variables are constrained. When one considers its inverse (Figure 13b), the same 
constraints appear on the input variables. In composing functions of this kind, one must exercise due care 
that the constraints are satisfied. 

Figure II.23: “(a) The interaction gate and (b) its inverse.” (Fredkin &
To↵oli, 1982) Note that the second pq from the bottom should be pq.

 
Figure 14  Billiard ball model realization of the interaction gate. 

All of the above requirements are met by introducing, in addition to collisions between two balls, collisions 
between a ball and a fixed plane mirror. In this way, one can easily deflect the trajectory of a ball (Figure 
15a), shift it sideways (Figure 15b), introduce a delay of an arbitrary number of time steps (Figure 1 Sc), and 
guarantee correct signal crossover (Figure 15d). Of course, no special precautions need be taken for trivial 
crossover, where the logic or the timing are such that two balls cannot possibly be present at the same 
moment at the crossover point (cf. Figure 18 or 12a). Thus, in the billiard ball model a conservative-logic 
wire is realized as a potential ball path, as determined by the mirrors. 

Note that, since balls have finite diameter, both gates and wires require a certain clearance in order to 
function properly. As a consequence, the metric of the space in which the circuit is embedded (here, we are 
considering the Euclidean plane) is reflected in certain circuit-layout constraints (cf. P8, Section 2). 
Essentially, with polynomial packing (corresponding to the Abelian-group connectivity of Euclidean space) 
some wires may have to be made longer than with exponential packing (corresponding to an abstract space 
with free-group connectivity) (Toffoli, 1977). 

 
Figure 15.  The mirror (indicated by a solid dash) can be used to deflect a ball’s path (a), introduce a 

sideways shift (b), introduce a delay (c), and realize nontrivial crossover (d). 

 
Figure 16.  The switch gate and its inverse. Input signal x is routed to one of two output paths depending on 

the value of the control signal, C. 

Figure II.24: “The mirror (indicated by a solid dash) can be used to deflect
a ball’s path (a), introduce a sideways shift (b), introduce a delay (c), and
realize nontrivial crossover (d).” (Fredkin & To↵oli, 1982)

(This is non-trivial crossover; trivial crossover is when two balls cannot
possibly be at the same place at the same time.)

¶14. Fig. II.24 shows mechanisms for realizing these functions.

¶15. Fig. II.25 shows a realization of the Fredkin gate in terms of multiple
interaction gates. (The “bridge” indicates non-trivial crossover.)

¶16. Practical problems: Minuscule errors of any sort (position, velocity,
alignment) will accumulate rapidly (by about a factor of 2 at each
collision).

¶17. E.g., initial random error of 1/1015 in position or velocity (about what
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Figure 3.14. A simple billiard ball computer, with three input bits and three output bits, shown entering on the left
and leaving on the right, respectively. The presence or absence of a billiard ball indicates a 1 or a 0, respectively.
Empty circles illustrate potential paths due to collisions. This particular computer implements the Fredkin classical
reversible logic gate, discussed in the text.

we will ignore the effects of noise on the billiard ball computer, and concentrate on
understanding the essential elements of reversible computation.
The billiard ball computer provides an elegant means for implementing a reversible

universal logic gate known as the Fredkin gate. Indeed, the properties of the Fredkin gate
provide an informative overview of the general principles of reversible logic gates and
circuits. The Fredkin gate has three input bits and three output bits, which we refer to
as a, b, c and a�, b�, c�, respectively. The bit c is a control bit, whose value is not changed
by the action of the Fredkin gate, that is, c� = c. The reason c is called the control bit
is because it controls what happens to the other two bits, a and b. If c is set to 0 then a
and b are left alone, a� = a, b� = b. If c is set to 1, a and b are swapped, a� = b, b� = a.
The explicit truth table for the Fredkin gate is shown in Figure 3.15. It is easy to see
that the Fredkin gate is reversible, because given the output a�, b�, c�, we can determine
the inputs a, b, c. In fact, to recover the original inputs a, b and c we need only apply
another Fredkin gate to a�, b�, c�:

Exercise 3.29: (Fredkin gate is self-inverse) Show that applying two consecutive
Fredkin gates gives the same outputs as inputs.

Examining the paths of the billiard balls in Figure 3.14, it is not difficult to verify that
this billiard ball computer implements the Fredkin gate:

Exercise 3.30: Verify that the billiard ball computer in Figure 3.14 computes the
Fredkin gate.

In addition to reversibility, the Fredkin gate also has the interesting property that
the number of 1s is conserved between the input and output. In terms of the billiard
ball computer, this corresponds to the number of billiard balls going into the Fredkin
gate being equal to the number coming out. Thus, it is sometimes referred to as being
a conservative reversible logic gate. Such reversibility and conservative properties are
interesting to a physicist because they can be motivated by fundamental physical princi-

Figure II.25: Realization of the Fredkin gate in terms of multiple interaction
gates. [NC]

would be expected from uncertainty principle) would lead to a com-
pletely unpredictable trajectory after a few dozen collisions.
It will lead to a Maxwell distribution of velocities, as in a gas.

¶18. “Even if classical balls could be shot with perfect accuracy into a perfect
apparatus, fluctuating tidal forces from turbulence in the atmosphere
of nearby stars would be enough to randomize their motion within a
few hundred collisions.” (Bennett, 1982, p. 910)

¶19. Various solutions have been considered, but they all have limitations.

¶20. “In summary, although ballistic computation is consistent with the laws
of classical and quantum mechanics, there is no evident way to prevent
the signals’ kinetic energy from spreading into the computer’s other
degrees of freedom.” (Bennett, 1982, p. 911)

¶21. Signals can be restored, but this introduces dissipation.

D Sources
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Figure 8 Realization of the J-K flip-flop. 

Finally, Figure 8 shows a conservative-logic realization of the J-¬K flip-flop. (In a figure, when the explicit 
value of a sink output is irrelevant to the discussion we shall generically represent this value by a question 
mark.) Unlike the previous circuit, where the wires act as "transmission" lines, this is a sequential network 
with feedback, and the wire plays an effective role as a "storage" element. 

4. COMPUTATION UNIVERSALITY OF CONSERVATIVE LOGIC 
An important result of conservative logic is that it is possible to preserve the computing capabilities of 
ordinary digital logic while satisfying the "physical" constraints of reversibility and conservation. 
Let us consider an arbitrary sequential network constructed out of conventional logic elements, such as AND 
and OR gates, inverters (or "NOT" gates), FAN-OUT nodes, and delay elements. For definiteness, we shall 
use as an example the network of Figure 9-a serial adder (mod 2). By replacing in a one-to-one fashion these 
elements (with the exception of the delay element-cf. footnote at the end of Section 3) with a conservative-
logic realization of the same elements (as given, for example, in Figures 4b, 6a, 6b, and 6c), one obtains a 
conservative-logic network that performs the same computation (Figure 10). Such a realization may involve 
a nominal slow-down factor, since a path that in the original network contained only one delay element may 
now traverse several unit wires. (For instance, the realization of Figure 9 has a slow-down factor of 5; note, 
however, that only every fifth time slot is actually used for the given computation, and the remaining four 
time slots are available for other independent computations, in a time-multiplexed mode.) Moreover, a 
number of constant inputs must be provided besides the argument, and the network will yield a number of 
garbage outputs besides the result. 

 
Figure 9.  An ordinary sequential network computing the sum (mod 2) of a stream of binary digits. Recall 

that a (+) b = ab +ab. 

Figure II.26: Implementation of J-K̄ flip-flop. [from FT82]
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