
Chapter III

Quantum Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. c�2013, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of September 6, 2013.

A Mathematical preliminaries

“[I]nformation is physical, and surprising physical theories such as quantum
mechanics may predict surprising information processing abilities.” (Nielsen
& Chuang, 2010, p. 98)

A.1 Complex numbers

If you go to the course webpage, and look under Quantum Computation in
the Topics section, you will see a link to “complex number review [FFC-
ch4].” Depending on how familiar you are with complex numbers, read or
skim it through section 4.4.2.1 (pp. 41–53). This should tell you all you need
to know (and a little more).

A.2 Linear algebra review

A.2.a Dirac bracket notation

¶1. Much of the math of quantum computation is just elementary linear
algebra, but the notation is di↵erent (and of course there is a physical
interpretation). The Dirac notation will seem peculiar if you are not
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70 CHAPTER III. QUANTUM COMPUTATION

used to it, but it is elegant and powerful, as are all good notations.
Think of it like a new programming language.

¶2. Vectors are written using Dirac’s bracket notation. | i represents an
n ⇥ 1 complex column vector, | i = (v

1

, . . . , vn)T.
We pronounce | i “ket psi” or “psi ket.”

¶3. Normally the vectors are finite-dimensional, but they can be infinite-
dimensional if the vectors have a finite magnitude (their components
are square-summable):

P
k |vk|2 < 1.

¶4. The Dirac notation has the advantage that we can use arbitrary names
for vectors, for example, |excitedi, |zeroi, |onei, | "i, | %i, |1i, |101i,
|5i, |f(x)i, |1 ⌦ g(1)i.
It looks kind of like an arrow. Cf. |vi and ~v.

A.2.b Dual vector

¶1. h�| represents a 1 ⇥ n complex row vector, h�| = (u
1

, . . . , un).
We pronounce h | “bra psi” or “psi bra.”

¶2. If | i = (v
1

, . . . , vn)T, then h | = (v
1

, . . . , vn), where vk is the complex
conjugate of vk.

A.2.c Adjoint

¶1. The adjoint (conjugate transpose, Hermitian transpose) M † of a matrix
M is defined

(M †)jk = Mkj.

We pronounce it “M dagger.”

¶2. Note h | = | i†.

A.2.d Inner product

¶1. Suppose |�i = (u
1

, . . . , un)T and | i = (v
1

, . . . , vn)T. Then the complex
inner product is defined

P
k ukvk.

Thus the inner product of two vectors is the conjugate transpose of the
first times the second.
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¶2. This is the convention in physics, which we will follow; mathematicians
usually put the complex conjugate on the second argument.

¶3. The inner product can be written as a matrix product: h�| | i =
(u

1

, . . . , un) (v1

, . . . , vn)T.

¶4. Since this is multiplying a 1 ⇥ n matrix by an n ⇥ 1 matrix, the result
is a 1 ⇥ 1 matrix, or scalar.

¶5. This product is abbreviated h� |  i = h�| | i.

¶6. Bra-ket: h� |  i can be pronounced “�-bra ket- ” or “� bra-ket  .”

¶7. Sesquilinearity: The complex inner product satisfies:

positive definite:

h |  i > 0, if | i 6= 0,

h |  i = 0, if | i = 0.

conjugate symmetry:

h� |  i = h | �i.

linearity in second argument:

h� | c i = ch� |  i, for c 2 C,

h� |  + �i = h� |  i + h� | �i.

¶8. Antilinearity in first argument: Note hc� |  i = ch� |  i.

A.2.e Inner product norm

¶1. The norm or magnitude of a vector is defined k| ik =
p

h |  i.

¶2. Normalization: A vector is normalized if k| ik = 1.

¶3. Note that normalized vectors fall on the surface of an n-dimensional
hypersphere.
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A.2.f Bases

¶1. Orthogonality: Vectors |�i and | i are orthogonal if h� |  i = 0.

¶2. Orthogonal set: A set of vectors is orthogonal if each vector is or-
thogonal to all the others.

¶3. Orthonormality: An orthonormal set of vectors is an orthogonal set
of normalized vectors.

¶4. Spanning: A set of vectors |�
1

i, |�
2

i, . . . spans a vector space if for
every vector | i in the space there are complex coe�cients c

1

, c
2

, . . .
such that | i =

P
k ck|�ki.

¶5. Basis: A basis for a vector space is a linearly independent set of vectors
that spans the space.

¶6. Equivalently, a basis is a minimal generating set for the space; that is
all of the vectors in the space can be generated by linear combinations
of the basis vectors.

¶7. Orthonormal basis: An (orthonormal) basis for a vector space is an
(orthonormal) set of vectors that spans the space.
In general, when I say “basis” I mean “ON basis.”

¶8. Unique representation: Any vector in the space has a unique rep-
resentation as a linear combination of the basis vectors.

¶9. Hilbert space: A Hilbert space is a complete inner-product space.
Complete means that all Cauchy sequences of vectors (or functions)
have a limit in the space. (In a Cauchy sequence, kxm � xnk ! 0 as
m,n ! 1.)
Hilbert spaces may be finite- or infinite-dimensional.

¶10. Generalized Fourier series: If |1i, |2i, . . . is an ON basis for H, then
any | i can be expanded in a generalized Fourier series:

| i =
X

k

ck|ki.

The generalized Fourier coe�cients ck can be determined as follows:

hk |  i = hk|
X

j

cj|ji =
X

j

cjhk | ji = ck.
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Therefore, ck = hk |  i. Hence,

| i =
X

k

ck|ki =
X

k

hk |  i |ki =
X

k

|kihk |  i.

This is just the vector’s representation in a particular basis.
(Note that this equation implies I =

P
k |kihk|.)

A.2.g Linear operators

¶1. A linear operator L : H ! Ĥ satisfies L(c|�i+d| i) = cL(|�i)+dL(| i)
for all |�i, | i 2 H and c, d 2 C.

A.2.h Matrix representation

¶1. A linear operator L : H ! Ĥ can be represented by a (possibly infinite-
dimensional) matrix relative to bases for H and Ĥ.

¶2. Suppose |1i, |2i, . . . is a basis for H and |1̂i, |2̂i, . . . is a basis for Ĥ.

¶3. Consider |�i = L| i and represent them in these bases by their Fourier
coe�cients: bj = h|̂ | �i and ck = hk |  i.

¶4. Hence |�i is represented by the vector b = (b
1

, b
2

, . . .)T and | i by the
vector c = (c

1

, c
2

, . . .)T.

¶5. Apply the linearity of L:

bj = h|̂ | �i
= h|̂ | L |  i

= h|̂|L
 X

k

ck|ki
!

= h|̂|
 X

k

ckL|ki
!

=
X

k

h|̂ | L | kick.

¶6. Define the matrix Mjk
def

= h|̂ | L | ki and we see b = Mc.
For this reason, an expression of the form h|̂ | L | ki is sometimes called
a matrix element.
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¶7. Note that the matrix depends on the basis we choose.

A.2.i Outer product or dyad

¶1. We can form the product of a ket and a bra, which is called a dyad or
outer product.

¶2. Finite dimensional: If |�i is an m ⇥ 1 column vector, and | i is an
n⇥ 1 column vector (so that h | is a 1⇥ n row vector), then the outer
product |�ih | is an m ⇥ n matrix.
Usually m = n.

¶3. Infinite dimensional: More generally, if |�i 2 H0 and | i 2 H, then
|�ih | is the linear operator L : H ! H0 defined, for any |�i 2 H:

L|�i = (|�ih |)|�i = |�i h | �i.

¶4. That is, |�ih | is the operator that returns |�i scaled by the inner
product of | i and its argument. To the extent that the inner product
measures the similarity of | i and |�i, the result |�i is weighted by this
similarity.

¶5. Ket-bra: The product |�ih | can be pronounced “�-ket bra- ” or “�
ketbra  ,” and abbreviated |�ih |.

¶6. Projector: |�ih�| is a projector onto |�i.

¶7. More generally, if |⌘
1

i, . . . , |⌘mi are ON, then
Pm

k=1

|⌘kih⌘k| projects
into the m-dimensional subspace spanned by these vectors.

A.2.j Outer product representation

¶1. Any linear operator can be represented as a weighted sum of outer
products.

¶2. Suppose L : H ! Ĥ, ||̂i is a basis for Ĥ, and |ki is a basis for H.

¶3. Suppose |�i = L| i.

¶4. We know from Sec. A.2.h that

h|̂ | �i =
X

k

Mjkck, where Mjk = h|̂ | L | ki, and ck = hk |  i.
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¶5. Hence,

|�i =
X

j

||̂i h|̂ | �i

=
X

j

||̂i
 X

k

Mjkhk |  i
!

=

 X
j

||̂i
X

k

Mjkhk|
!

| i

=

 X
jk

Mjk||̂ihk|
!

| i.

¶6. Hence, we have a sum-of-outer-products representation of the operator:

L =
X
jk

Mjk||̂ihk|, where Mjk = h|̂ | L | ki.

A.2.k Tensor product

¶1. Tensor product of vectors: Suppose that |⌘ji is an ON basis for H
and |⌘0

ki is an ON basis for H0. For every pair of basis vectors, define
the tensor product |⌘ji⌦ |⌘0

ki as a sort of couple or pair of the two basis
vectors.

(I.e., there is a one-to-one correspondence between the |⌘ji ⌦ |⌘0
ki and

the pairs in {|⌘
0

i, |⌘
1

i, . . .} ⇥ {|⌘0
0

i, |⌘0
1

i, . . .}.

¶2. Tensor product space: Define the tensor product space H⌦H0 as the
space spanned by all linear combinations of the basis vectors |⌘ji⌦ |⌘0

ki.
Therefore each element of H ⌦ H0 is represented by a unique sumP

jk cjk|⌘ji ⌦ |⌘0
ki.

¶3. The tensor product is essential to much of the power of quantum com-
putation.

¶4. Kronecker product of vectors: If |�i = (u
1

, . . . , um)T and | i =
(v

1

, . . . , vn)T, then their tensor product can be defined by the Kronecker
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product):

|�i ⌦ | i =

0B@ u
1

| i
...

um| i

1CA
=

�
u

1

| iT, . . . , um| iT

�
T

= (u
1

v
1

, . . . , u
1

vn, . . . , umv1

. . . , umvn)
T.

Note that this is an mn ⇥ 1 column vector and that

(|�i ⌦ | i)
(j�1)n+k = ujvk.

¶5. The following abbreviations are frequent: |� i = |�, i = |�i| i =
|�i ⌦ | i. Note that |�i| i can only be a tensor product because it
would not be a legal matrix product.

¶6. Some properties of the tensor product:

(c|�i) ⌦ | i = c(|�i ⌦ | i) = |�i ⌦ (c| i),
(|�i + | i) ⌦ |�i = (|�i|�i) + (| i|�i),
|�i ⌦ (| i + |�i) = (|�i ⌦ | i) + (|�i ⌦ |�i).

¶7. Inner products of tensor products:

h�
1

�
2

|  
1

 
2

i = h�
1

⌦ �
2

|  
1

⌦  
2

i = h�
1

|  
1

i h�
2

|  
2

i.

¶8. Tensor product of operators: The tensor product of linear opera-
tors is defined

(L ⌦ M) (|�i ⌦ | i) = L|�i ⌦ M | i.

¶9. Using the fact that | i =
P

jk cjk|⌘ji⌦|⌘0
ki you can compute (L⌦M)| i

for an arbitrary | i 2 H ⌦ H0 (exercise).

¶10. Kronecker product of matrices: If M is a k ⇥ m matrix and N is
a l ⇥ n matrix, then their Kronecker product is a kl ⇥ mn matrix:

M ⌦ N =

0BBB@
M

11

N M
12

N · · · M
1mN

M
21

N M
22

N · · · M
2mN

...
...

. . .
...

Mk1

N Mk2

N · · · MkmN

1CCCA .
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¶11. For vectors, operators, and spaces, we pronounce M ⌦N as “M tensor
N .”

¶12. For a vector, operator, or space M , we define the tensor power M⌦n to
be M tensored with itself n times:

M⌦n =

nz }| {
M ⌦ M ⌦ · · · ⌦ M .

A.2.l Properies of operators and matrices

¶1. Normal: An operator L : H ! H is normal if L†L = LL†. The same
applies to square matrices. That is, normal operators commute with
their adjoints.

¶2. Spectral decomposition: For any normal operator on a finite-dimensional
Hilbert space, there is an ON basis that diagonalizes the operator, and
conversely, any diagonalizable operator is normal.

The ON basis is the eigenvectors |0i, |1i, . . . , and the corresponding
eigenvalues �k are the diagonal elements (cf. Sec. A.2.j, ¶6, p. 75):
L =

P
k �k|kihk|.

¶3. Therefore, a matrix is normal i↵ it can be diagonalized by a unitary
transform (see ¶8, below).
That is, there is a unitary U such that L = U⇤U †, where ⇤ = diag(�

1

, . . .�n).

If |0i, |1i, . . . is the basis, then U = (|0i, |1i, . . .) and U † =

0B@ h0|
h1|
...

1CA.

More generally, this applies to compact normal operators.

¶4. Hermitian or self-adjoint: An operator L : H ! H is Hermitian or
self-adjoint if L† = L. The same applies to square matrices.
(They are the complex analogues of symmetric matrices.)

¶5. Hermitian operators are normal.

¶6. It is easy to see that L is Hermitian i↵ h� | L |  i = h | L | �i for all
|�i, | i.
(Since h | L | �i = h� | L† |  i = h� | L |  i.)
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¶7. A normal matrix is Hermitian i↵ it has real eigenvalues (exercise).
This is important in QM, since measurement results are real.

¶8. Unitary operators: An operator U is unitary if U †U = UU † = I.
That is, a unitary operator is invertible and its inverse is its adjoint.

¶9. Therefore every unitary operator is normal.

¶10. A normal matrix is unitary i↵ its spectrum is contained in the unit
circle in the complex plane.

¶11. If U is unitary, U�1 = U †.

¶12. Unitary operators preserve inner products: h� | U †U |  i = h� |  i.
That is, the inner product of U |�i and U | i is the same as the inner
product of |�i and | i.
Note h� | U †U |  i = (U |�i)†U | i, the inner product.

¶13. Unitary operators are isometric, i.e., they preserve norms:

kU | ik2 = h | U †U |  i = h |  i = k| ik2.

¶14. Unitary operators are like rotations of a complex vector space (anal-
ogous to orthogonal operators, which are rotations of a real vector
space).

A.2.m Operator functions

¶1. It is often convenient to extend various complex functions (e.g., ln, exp,
p
)

to normal matrices and operators.

¶2. If f : C ! C and L : H ! H, then we define:

f(L)
def

=
X

k

f(�k)|kihk|,

where L =
P

k �k|kihk| is a spectral decomposition of L (Sec. A.2.l, ¶2).

¶3. Therefore, for a normal linear operator or matrix L we can write
p
L,

lnL, eL, etc.


