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Figure III.1: Probability density of first six hydrogen orbitals. The main
quantum number (n = 1, 2, 3) and the angular momentum quantum number
(` = 0, 1, 2 = s, p, d) are shown. (The magnetic quantum number m = 0 in
these plots.) [fig. from wikipedia commons]

B Basic concepts from quantum theory

B.1 Postulates of QM

Quotes are from Nielsen & Chuang (2010) unless otherwise specified.

B.1.a Postulate 1: state space

¶1. Associated with any isolated physical system is a state space, which is
a Hilbert space.

¶2. The state of the system “is completely defined by its state vector, which
is a unit vector in the system’s state space.”

¶3. The state | i is understood as a wavefunction.

¶4. A wavefunction for a particle defines the probability amplitude distri-
bution (actually probability density function) of some quantity. For
example, | i may define the complex amplitude  (x) associated with
each location x, and |�i may define the complex amplitude of �(p)
associated with each momentum p. See Fig. III.1.
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Figure III.2: Relative phase vs. global phase. What matters in QM is relative
phases between state vectors (e.g., ✓ in the figure). Global phase “has no
physical meaning”; i.e., we can choose to put the 0� point anywhere we like.

¶5. Normalization: The state vector has to be normalized so that the
total probability is 1.

¶6. Inner product: The inner product of wavefunctions is defined:

h� |  i =
Z

R3

�(r) (r)dr.

For this example we are assuming the domain is 3D space.

¶7. Global vs. relative phase: In QM, global phase has no physical
meaning; all that matters is relative phase.
In other words, if you consider all the angles around the circle, there is
no distinguished 0�. See Fig. III.2.
Likewise, in a continuous wave (such as sine), there is no distinguished
starting point (see Fig. III.3).

¶8. To say all pure states are normalized is another way to say that their
absolute length has no physical meaning.
That is, only their form (shape) matters, not their absolute size. This
is a characteristic of information.

¶9. Projective Hilbert space: Pure states correspond to the rays in a
projective Hilbert space.
A ray is an equivalence class of nonzero vectors under the relation,
� ⇠=  i↵ 9z 6= 0 2 C : � = z , where �, 6= 0.
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Figure III.3: Relative phase vs. global phase of sine waves. There is no
privileged point from which to start measuring absolute phase, but there is
a definite relative phase between the two waves.

However, it is more convenient to use normalized vectors in ordinary
Hilbert spaces, ignoring global phase.

B.1.b Postulate 2: evolution

¶1. “The evolution of a closed quantum system is described by a unitary
transformation.”

Therefore a closed quantum system evolves by complex rotation of a
Hilbert space.

¶2. That is, the state | i of the system at time t is related to the state | 0i
of the system at time t0 by a unitary operator U which depends only
on the times t and t0,

| 0i = U(t, t0)| i = U | i.

¶3. See Sec. B.6, below.

¶4. This describes the evolution of systems that don’t interact with the
rest of the world.
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B.1.c Postulate 3: quantum measurement

¶1. What happens if the system is no longer closed, i.e., it interacts with
the larger environment?

¶2. Postulate 3: Quantum measurements are described by a collection of
quantum measurement operators, Mm, for each possible measurement
outcome m.

¶3. The probability of measurement m of state | i is:

p(m) = kMm| ik2 = h | M †
mMm |  i. (III.1)

¶4. Born’s Rule: After measurement the state of the system is (unnor-
malized) Mm| i, or normalized:

Mm| i
kMm| ik .

¶5. Measurement operations satisfy the completeness relation:
P

m M †
mMm =

I.

¶6. That is, the measurement probabilities sum to 1:

1 =
X
m

p(m) =
X
m

h | M †
mMm |  i.

¶7. Observable: An observable M is a Hermitian operator on the state
space.

¶8. Projective measurements: An observable M has a spectral decom-
position

M =
X
m

emPm,

where the Pm are projectors onto the eigenspace of M , and the eigen-
values em are the corresponding measurement results.
The projector Pm projects into the eigenspace corresponding to eigen-
value em.
(For projectors, see Sec. A.2.i, §6.)
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¶9. Since a projective measurement is described by a Hermitian opera-
tor M , it has a spectral decomposition with real eigenvalues, M =P

j ej|⌘jih⌘j|, where ⌘j is the measurement basis.

¶10. Therefore we can write M = UEU †, where E = diag(e
1

, e
2

, . . .), U =
(|⌘

1

i, |⌘
2

i, . . .), and

U † = (|⌘
1

i, |⌘
2

i, . . .)† =

0B@ h⌘
1

|
h⌘

2

|
...

1CA .

U † expresses the state in the measurement basis and U translates back.

¶11. In the measurement basis, the matrix for an observable is a diagonal
matrix: E = diag(e

1

, . . . , em).

¶12. This is a special case of Postulate 3 in which the “Mm are orthogonal
projectors, that is, the Mm are Hermitian, and MmMm0 = �m,m0Mm0 .”
That is MmMm = Mm (idempotent), and MmMm0 = 0 for m 6= m0

(orthogonal).
Also, since Mm is Hermitian, M †

mMm = MmMm = Mm.

¶13. The probability of measuring em is

p(m) = h | M †
mMm |  i = h | Mm |  i = h | Pm |  i.

¶14. Suppose Pm = |mihm| and | i =
P

j cj|ji (i.e., write it in the measure-
ment basis). Then

p(m) = h | Pm |  i
= h | mihm |  i
= hm |  i⇤hm |  i
= |hm |  i|2

= |cm|2.

¶15. More generally, the same hold if Pm projects into an eigenspace, Pm =P
k |kihk|.

Alternatively, we can “zero out” the cj for the orthogonal subspace,
i.e., for the |ji omitted by Pm.
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¶16. To maintain total probability = 1, the state after measurement is

Pm| ip
p(m)

=
Pm| i

kPm| ik .

¶17. Motivation: To understand the motivation for this, suppose we have
a quantum system (such as an atom) that can be in three distinct
states |groundi, |first excitedi, |second excitedi with energies e

0

, e
1

, e
2

,
respectively. Then the energy observable is the operator

E = e
0

|groundihground| + e
1

|first excitedihfirst excited|
+ e

2

|second excitedihsecond excited|,

or more briefly,
P

2

j=0

ej|jihj|.

¶18. Mean or expectation value: We can derive the mean or expectation
value of an energy measurement for a given quantum state:

hEi def

= µE
def

= E{E}
=

X
j

ejp(j)

=
X

j

ejh | jihj |  i

=
X

j

h | ej|jihj| | i

= h |
 X

j

ej|jihj|
!

| i

= h | E |  i.

¶19. Variance and standard deviation: This yields the formula for the
standard deviation �E and variance, which are important in the uncer-
tainty prinsiple:

�2

E
def

= (�E)2
def

= Var{E}
= E{(E � hEi)2}
= hE2i � hEi2

= h | E2 |  i � (h | E |  i)2.
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Note that E2, the matrix E multipled by itself, is also the operator that
measures the square of the energy, E2 =

P
j e

2

j |jihj|. (This is because
E is diagonal in this basis; alternately, E2 can be interpreted as an
operator function.)

B.1.d Postulate 4: composite systems

¶1. “The state space of a composite physical system is the tensor product
of the state spaces of the component physical systems.”

¶2. If there are n subsystems, and subsystem j is prepared in state | ji,
then the composite system is in state

| 
1

i ⌦ | 
2

i ⌦ · · · ⌦ | ni =
nO

j=1

| ji.


