

Figure III.22: Quantum circuit for Deutsch algorithm. [fig. from NC]

D Quantum algorithms

D.1 Deutsch-Jozsa

D.1.a Deutsch algorithm

- ¶1. This is a simplified version of Deutsch's original algorithm, which shows how it is possible to extract global information about a function by using quantum parallelism and interference (Fig. III.22).⁵
- ¶2. Suppose we have a function $f: \mathbf{2} \to \mathbf{2}$, as in Sec. C.5. The goal is to determine whether f(0) = f(1) with a *single* function evaluation. This is not a very interesting problem (since there are only four such functions), but it is a warmup for the Deutsch-Jozsa algorithm.
- ¶3. It could be expensive to decide on a classical computer. For example, suppose f(0) = the millionth digit of π and f(1) = the millionth digit of e. Then the problem is to decide if the millionth digits of π and e are the same.

It is mathematically simple, but computationally complex.

¶4. Initial state: Begin with the qubits $|\psi_0\rangle = |01\rangle$.

 $^{^5}$ This is the 1998 improvement by Cleve et al. to Deutsch's 1985 algorithm (Nielsen & Chuang, 2010, p. 59).

133

¶5. Superposition: Transform it to a pair of superpositions

$$|\psi_1\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |+-\rangle.$$
 (III.21)

by two tensored Hadamard gates.

Recall
$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = |+\rangle$$
 and $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle) = |-\rangle$.

- ¶6. Function application: Next apply U_f to $|\psi_1\rangle = |+-\rangle$.
- ¶7. Note $U_f|x\rangle|0\rangle = |x\rangle|0 \oplus f(x)\rangle = |x\rangle|f(x)\rangle$.
- ¶8. Also note $U_f|x\rangle|1\rangle = |x\rangle|1 \oplus f(x)\rangle = |x\rangle|\neg f(x)\rangle$.
- ¶9. Therefore, expand Eq. III.21 and apply U_f :

$$|\psi_{2}\rangle = U_{f}|\psi_{1}\rangle$$

$$= U_{f}\left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)\right]$$

$$= \frac{1}{2}[U_{f}|00\rangle - U_{f}|01\rangle + U_{f}|10\rangle - U_{f}|11\rangle]$$

$$= \frac{1}{2}[|0, f(0)\rangle - |0, \neg f(0)\rangle + |1, f(1)\rangle - |1, \neg f(1)\rangle]$$

There are two cases: f(0) = f(1) and $f(0) \neq f(1)$.

¶10. Equal (constant function): If f(0) = f(1), then

$$|\psi_{2}\rangle = \frac{1}{2}[|0, f(0)\rangle - |0, \neg f(0)\rangle + |1, f(0)\rangle - |1, \neg f(0)\rangle]$$

$$= \frac{1}{2}[|0\rangle(|f(0)\rangle - |\neg f(0)\rangle) + |1\rangle(|f(0)\rangle - |\neg f(0)\rangle)]$$

$$= \frac{1}{2}(|0\rangle + |1\rangle)(|f(0)\rangle - |\neg f(0)\rangle)$$

$$= \pm \frac{1}{2}(|0\rangle + |1\rangle)(|0\rangle - |1\rangle)$$

$$= |+-\rangle.$$

The last line applies because global phase (including \pm) doesn't matter.

¶11. Unequal (balanced function): If $f(0) \neq f(1)$, then

$$|\psi_{2}\rangle = \frac{1}{2}[|0, f(0)\rangle - |0, \neg f(0)\rangle + |1, \neg f(0)\rangle - |1, f(0)\rangle]$$

$$= \frac{1}{2}[|0\rangle(|f(0)\rangle - |\neg f(0)\rangle) + |1\rangle(|\neg f(0)\rangle - |f(0)\rangle)]$$

$$= \frac{1}{2}[|0\rangle(|f(0)\rangle - |\neg f(0)\rangle) - |1\rangle(|f(0)\rangle - |\neg f(0)\rangle)]$$

$$= \frac{1}{2}(|0\rangle - |1\rangle)(|f(0)\rangle - |\neg f(0)\rangle)$$

$$= \pm \frac{1}{2}(|0\rangle - |1\rangle)(|0\rangle - |1\rangle)$$

$$= |--\rangle$$

Clearly we can discriminate between the two cases by measuring the first qubit in the sign basis.

¶12. **Measurement:** Therefore we can determine whether f(0) = f(1) or not by measuring the first bit of $|\psi_2\rangle$ in the sign basis, which we can do with the Hadamard gate (recall $H|+\rangle = |0\rangle$ and $H|-\rangle = |1\rangle$):

$$|\psi_{3}\rangle = (H \otimes I)|\psi_{2}\rangle$$

$$= \begin{cases} \pm |0\rangle|-\rangle, & \text{if } f(0) = f(1) \\ \pm |1\rangle|-\rangle, & \text{if } f(0) \neq f(1) \end{cases}$$

$$= \pm |f(0) \oplus f(1)\rangle|-\rangle.$$

- ¶13. Therefore we can determine whether or not f(0) = f(1) with a single evaluation of f.

 (This is very strange!)
- ¶14. In effect, we are evaluating f on a superposition of $|0\rangle$ and $|1\rangle$ and determining how the results interfere with each other. As a result we get a definite (not probabilistic) determination of a global property with a single evaluation.
- ¶15. This is a clear example where a quantum computer can do something faster than a classical computer.
- ¶16. However, note that U_f has to uncompute f, which takes as much time as computing it, but we will see other cases (Deutsch-Jozsa) where the speedup is much more than $2\times$.

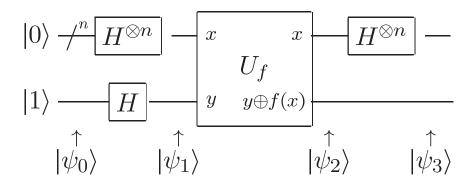


Figure III.23: Quantum circuit for Deutsch-Jozsa algorithm. [fig. from NC]

D.1.b DEUTSCH-JOZSA ALGORITHM

- ¶1. The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm to n bits; they published it in 1992; this is an improved version (Nielsen & Chuang, 2010, p. 59).
- ¶2. The problem: Suppose we are given an unknown function $f : \mathbf{2}^n \to \mathbf{2}$ in the form of a unitary transform $U_f \in \mathcal{L}(\mathcal{H}^{n+1}, \mathcal{H})$ (Fig. III.23).
- ¶3. We are told only that f is either constant or *balanced*, which means that it is 0 on half its domain and 1 on the other half. Our task is to determine into which class a given f falls.
- ¶4. Classical: Consider first the classical situation. We can try different input bit strings x.

We might (if we're lucky) discover after the second query of f that it is not constant.

But we might require as many as $2^n/2+1$ queries to answer the question. So we're facing $\mathcal{O}(2^{n-1})$ function evaluations.

- ¶5. **Initial state:** As in the Deutsch algorithm, prepare the initial state $|\psi_0\rangle = |0\rangle^{\otimes n}|1\rangle$.
- ¶6. Superposition: Use the Walsh-Hadamard transformation to create a

superposition of all possible inputs:

$$|\psi_1\rangle = (H^{\otimes n} \otimes H)|\psi_0\rangle = \sum_{\mathbf{x} \in \mathbf{2}^n} \frac{1}{\sqrt{2^n}} |\mathbf{x}, -\rangle.$$

- ¶7. Claim: We will show that $U_f|\mathbf{x}, -\rangle = (-)^{f(\mathbf{x})}|\mathbf{x}\rangle|-\rangle$, where $(-)^n$ is an abbreviation for $(-1)^n$.
- ¶8. From the definition of $|-\rangle$ and U_f , $U_f|\mathbf{x}, -\rangle = |\mathbf{x}\rangle \frac{1}{\sqrt{2}}(|f(\mathbf{x})\rangle |\neg f(\mathbf{x})\rangle)$.
- ¶9. Since $f(\mathbf{x}) \in \mathbf{2}$, $\frac{1}{\sqrt{2}}(|f(\mathbf{x})\rangle |\neg f(\mathbf{x})\rangle) = |-\rangle$ if $f(\mathbf{x}) = 0$, and it $= -|-\rangle$ if $f(\mathbf{x}) = 1$.
 This establishes the claim.
- ¶10. Function application: Since $U_f|\mathbf{x},y\rangle = |\mathbf{x},y\oplus f(x)\rangle$, you can see that:

$$|\psi_2\rangle = U_f |\psi_1\rangle = \sum_{\mathbf{x} \in \mathbf{2}^n} \frac{1}{\sqrt{2^n}} (-)^{f(\mathbf{x})} |\mathbf{x}, -\rangle.$$

- ¶11. The top n lines contain a superposition of the 2^n simultaneous evaluations of f. To see how we can make use of this information, let's consider their state in more detail.
- ¶12. For a *single* bit you can show (exercise!):

$$H|x\rangle = \sum_{z \in \mathbf{2}} \frac{1}{\sqrt{2}} (-)^{xz} |z\rangle.$$

(This is just another way of writing $H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ and $H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$.)

¶13. Therefore, for the n bits:

$$H^{\otimes n}|x_1, x_2, \dots, x_n\rangle = \frac{1}{\sqrt{2^n}} \sum_{z_1, \dots, z_n \in \mathbf{2}} (-)^{x_1 z_1 + \dots + x_n z_n} |z_1, z_2, \dots, z_n\rangle$$
$$= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{z} \in \mathbf{2}^n} (-)^{\mathbf{x} \cdot \mathbf{z}} |\mathbf{z}\rangle, \qquad (III.22)$$

where $\mathbf{x} \cdot \mathbf{z}$ is the bitwise inner product. (It doesn't matter if you do addition or \oplus since only the parity of the result is significant.) Remember this formula!

137

¶14. Combining this and the result in $\P10$,

$$|\psi_3\rangle = (H^{\otimes n} \otimes I)|\psi_2\rangle = \sum_{\mathbf{z} \in \mathbf{2}^n} \sum_{\mathbf{x} \in \mathbf{2}^n} \frac{1}{2^n} (-)^{\mathbf{x} \cdot \mathbf{z} + f(\mathbf{x})} |\mathbf{z}\rangle |-\rangle.$$

- ¶15. **Measurement:** Consider the first n qubits and the amplitude of one particular basis state, $\mathbf{z} = |0\rangle^{\otimes n}$. Its amplitude is $\sum_{\mathbf{x} \in \mathbf{2}^n} \frac{1}{2^n} (-)^{f(\mathbf{x})}$.
- ¶16. Constant function: If the function is constant, then all the exponents of -1 will be the same (either all 0 or all 1), and so the amplitude will be ± 1 .

Therefore all the other amplitudes are 0 and any measurement must yield 0 for all the bits (since only $|0\rangle^{\otimes n}$ has nonzero amplitude).

¶17. **Balanced function:** If the function is not constant then (*ex hypothesi*) it is balanced.

But more specifically, if it is balanced, then there must be an equal number of +1 and -1 contributions to the amplitude of $|0\rangle^{\otimes n}$, so its amplitude is 0.

Therefore, when we measure the state, at least one qubit must be nonzero (since the all-0s state has amplitude 0).

- ¶18. Good and bad news: The good news is that with one quantum function evaluation we have got a result that would require between 2 and $\mathcal{O}(2^{n-1})$ classical function evaluations (exponential speedup). The bad news is that the algorithm has no known applications!
- ¶19. Even if it were useful, the problem could be solved probabilistically on a classical computer with only a few evaluations of f.
- ¶20. However, it illustrates principles of quantum computing that can be used in more useful algorithms.