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D.4 Search problems

This lecture is based primarily on IQC.

D.4.a Overview
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Many problems can be formulated as search problems over a solution
space S. That is, find the € S such that some predicate P(z) is true.

For example, hard problems such as the Hamiltonian paths problem
and Boolean satisfiability can be formulated this way.

Unstructured search problem: a problem that makes no assump-
tions about the structure of the search space, or for which there is no
known way to make use of it.

Also called a needle in a haystack problem.

That is, information about a particular value P(xy) does not give us
usable information about another value P(x;).

Structured search problem: a problem in which the structure of
the solution space can be used to guide the search.
Example: searching an alphabetized array.

Cost: In general, unstructured search takes O(M) evaluations, where
M = |S] is the size of the solution space (which is often exponential in
the size of the problem).

On the average it will be M /2 (think of searching an unordered array).

Grover’s algorithm: We will see that Grover’s algorithm can do
unstructured search on a quantum computer with bounded probability
in (’)(\/M ) time, that is, quadratic speedup. This is provably more
efficient than any algorithm on a classical computer.

Optimal: This is good (but not great). Unfortunately, it has been
proved that Grover’s algorithm is optimal for unstructured search.

Therefore, to do better requires exploiting the structure of the solution
space. Quantum computers do not exempt us from understanding the
problems we are trying to solve!
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Figure II1.28: Depiction of the result of phase rotation (changing the sign)
of solutions in Grover’s algorithm. [source: IQC]

€10. Shor’s algorithm is an excellent example of exploiting the structure of
a problem domain.

q11. Later we will take a look at heuristic quantum search algorithms that
do make use of problem structure.

D.4.b GROVER

€1. Pick n such that 2" > M.
Let N =27
and let N =2" = {0,1,..., N — 1}, the set of n-bit strings.

92. Suppose we have a quantum gate array Up (an oracle) that computes
the predicate:

Uple,y) = v,y © P(x)).

3. Application: As usual, we begin by applying the function to a super-
position of all possible inputs |1y):

Up|tho)|0) = Up

O o>] = =3l Pla))

zeN zeN

94. Notice that the components we want, |z,1), and the components we
don’t want, |z,0), all have the same amplitude, \/LN
So if we measure the state, the chances of getting a hit are very small,

O@2™).

5. The trick, therefore, is to amplify the components that we want at the
expense of the ones we don’t want; this is what Grover’s algorithm
accomplishes.
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Figure I11.29: Depiction of result of inversion about the mean in Grover’s
algorithm. [source: 1QC]
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To do this, first we change the sign of every solution (a phase rotation
of ).

That is, if the state is > _; a;|z;, P(z;)), then we want to change a; to
—a; whenever P(z;) = 1.

See Fig. T11.28.

I'll get to the technique in a moment.

Next, we invert all the components around their mean amplitude (which
is a little less than the amplitudes of the non-solutions).

The result is shown in Fig. II1.29.

This amplifies the solutions.

Iteration: This Grover iteration (the sign change and inversion about
s

the mean) is repeated 4N times.
Thus the algorithm is O(v/N).

Measurement: Measurement yields an x, for which P(zy) = 1 with
high probability.

Probability: Specifically, if there is exactly one solution zy € S, then

TN iterations will yield it with probability 1/2.

With %ﬁ iterations, the probability of failure drops to 1/N = 27",
Unlike with most classical algorithms, additional iterations will give a
worse result.

This is because Grover iterations are unitary rotations, and so excessive
rotations can rotate past the solution.

Therefore it is critical to know when to stop.
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Fortunately there is a quantum technique (Brassard et al. 1998) for
determining the optimal stopping point.

Grover’s iteration can be used for a wide variety of problems as a part
of other quantum algorithms.

Changing the sign: Now for the techniques for changing the sign
and inversion about the mean. To change the sign, simply apply Up to
i) =)-

To see the result, let Xg = {z | P(z) = 0} and X; = {z | P(z) = 1},
the solution set. Then:

UP|1/Jk>|_>_
= Up Zam|x,—>]
= UP _%gaﬂﬁ‘xa 0> _ax’:Eal)]

1
= E UP Z CLx’JI,O) + Z a$|$,0> - Z CLQ;|£U, 1> - Z am’x7 1)
zeXo zeX1 zeXp zeX1
1
- > > aUplz,0) + ) a,Uplz,0)
reXg reX]
— Z a,Upl|x,1) — Z a,Up|z, 1>]
xeXo rxeX,
1
= — Z az|x,0) + Z az|x, 1)
\/§ [:EEXO r€Xq
— Z azlz,1®0) — Z azlr,1® 1)
ze Xy reX1
= [Z au|)[0) + D arle)[1) = D au|z)[1) = Y ala)|0)
x€Xp reX] z€Xp reX1

Sl Sl

(Z aslw) = ) ax!x>> (10) = [1))

reXp reX,
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Figure I11.30: Process of inversion about the mean in Grover’s algorithm.
The black lines represent the original amplitudes a;. The red lines represent
2a — aj, with the arrow heads indicating the new amplitudes a’.
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= (Z agle) = Y a$|x>> =)

z€Xy reXy

Therefore the signs of the solutions have been reversed (they have been
rotated by ).

Notice how |—) in the target register can be used to separate the 0 and
1 results by rotation. This is a useful idea!

Geometric analysis: In the following geometric analysis, I will sup-
pose that there is just one answer « such that P(«) = 1.

Then |«) is the desired answer vector.

Let |w) be a uniform superposition of all the other (non-answer) states.
Note that |a) and |w) are orthonormal.

Therefore, [¢o) = —=[a) + v/ B w).

In general, [1;,) = ala) + w|w), where |a|* + |w]* = 1.

Sign-change reflection: The sign change operation transforms the
state:

[¥) = ala) +wlw) = —ale) + wlw) = [¢f).

This is a reflection across the |w) vector.
This means that it will be useful to look at reflections.



158

q18.

q19.

q20.

1.

q22.

q23.

CHAPTER III. QUANTUM COMPUTATION

Reflection around arbitrary vector: Suppose that |¢) and |¢t) are
orthonormal vectors and that [1)) = a|é™) + blg).

The reflection of 1) across |¢) is [¢') = —a|¢t) + b|a).

Since [¢) = [8)(¢ | ¥) + |¢1) (o~ | ),

you can see that 1)) = [6)(¢ [ ¥) — [¢4) (¢ | ¥).
Hence the operator to reflect across |¢) is Ry = |¢)o| — [ Yo

Alternate forms are 2|¢¥¢| — I and I — 2|¢* )¢t |.

Sign change as reflection: The sign change can be expressed as a
reflection:

Ry, = wfw| — |afal = I = 2[afal,
which expresses the sign-change of the answer vector clearly. Of course
we don’t know |a), which is why we use Up.

Inversion about mean as reflection: We will see that the inversion
about the mean is equivalent to reflecting that state vector across |1)y).

Effect of Grover iteration: But first, taking this for granted, let’s
see what its effect is.
Let 0 be the angle between |1¢) and |w).

N—1

It’s given by the inner product cos = (1 | w) = 1/ ~5-
Therefore the sign change reflects |1)y) from @ above |w) into |1)(), which
is 0 below it.

Inversion about the mean reflects |1)) from 26 below [¢y) into [t¢1),
which is 26 above it.

Therefore, in going from [¢g) to [i1) the state vector has rotated 26

closer to |a).

Number of iterations: You can see that after k iterations, the state
vector [¢) is (2k + 1)0 above |w).
We can solve (2k 4 1) = 7/2 to get the required number of iterations.

Note that for small 0, § ~ sinf = \/LN (which is certainly small).

Hence, (2k +1)/v/N ~ /2, or 2k + 1 ~ 7v/N /2.
That is, k ~ 7v/N /4.

Note that after mv/ N /8 iterations, we are about halfway there (i.e.,
7/4), so the probability of success is 50%.
In general, the probability of success is about sin? %T;LVI
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Inversion about mean as reflection: It remains to show the con-
nection between inversio about the mean and reflection across |y).
This reflection is given by Ry, = 2[¢{to| — I. Note:

Yoyl = ( >l ) (%Ny;@) = 3 el

xEN xeN yeN

This is the diffusion matriz

1 1 i
N N N
1 1 L
N N N
. Y
11 1
N N N

which, as we will see, does the averaging.

Inversion about the mean: To perform inversion about the mean,
let a be the average of the a;.
See Fig. I11.30.

Inversion about the mean is accomplished by the transformation

Zaﬂ% = Z a;)|z;)-

JEN JEN

To see this, suppose a; = a £ 0.

Then 2a —a; =2a — (ax4d) =a F 0.

Therefore an amplitude § below the mean will be transformed to ¢
above, and vice verse.

But an amplitude that is negative, and thus very far below the mean,
will be transformed to an amplitude much above the mean.

Grover diffusion transformation: Inversion is accomplished by a
“diffusion transformation” D.

To derive the matrix D, consider the new amplitude @’ as a function
of all the others:

1 ¥ 9 9
a;:2a—aj:2<ﬁzak)_aj:ZNak+<N_1>aj'
k=0

k#j
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This matrix has % — 1 on the main diagonal and % in the off-diagonal
elements:

2 9 2 2
N N N
2 214 2
N N N
D = . .
2 2 2 4
N N N

It is easy to confirm DDT = [ (exercise), so the matrix is unitary and
therefore a possible quantum operation, but it remains to be seen if it
can be implemented efficiently.

Claim: D = WRW, where W = H®" is the n-qubit Walsh-Hadamard
transform and R is the phase rotation matriz:

1 0 0

R 0 —1 0

0 0 —1

To see this, let

20 --- 0
00 --- 0
RYR+1= ,
00 --- 0

Then WRW =W(R' — )W =WRW —WW =WRW — 1.

It is easy to show (exercise) that:

2 2 2
N N N
2 2 2
WRW=| N~ ¥ N
2 2 2
N N N

It therefore follows that D = WR'W — [ = WRW.

See Fig. I11.31 for a diagram of Grover’s algorithm.



D. QUANTUM ALGORITHMS 161

PH

ST

@n
87 —{W

n

1
v

’
]
f
\

-7

-1

- =1

| e
i

T o s e e = -

Figure II1.31: Circuit for Grover’s algorithm. The Grover iteration in the

dashed box is repeated %ﬁ times.

D.4.c Ho0GG’S HEURISTIC SEARCH ALGORITHMS
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Constraint satisfaction problems: Many important problems can
be formulated as constraint satisfaction problems, in which we try to
find a set of assignments to variables that satisfy specified constraints.

More specifically let V' = {wvy,...,v,} is a set of variables,

and let X = {xy,...,x,} is a set of values that can be assigned to the
variables,

and let (', ..., C} be the constraints.

The set of all possible assignments of values to variables is V' x X.
Subsets of this set correspond to full or partial assignments, including
inconsistent assignments.

The set of all such assignments is P(V x X).

Lattice: The sets of assignments form a lattice under the C partial
order (Fig. I11.32).

Binary encoding: By assigning bits to the elements of V' X X, ele-
ments of P(V X X) can be represented by mn-element bit strings (i.e.,
integers in the set MIN = {0,...,2™" — 1}).

See Fig. 111.33.

Idea: Hogg’s algorithms are based on the observation that if an as-
signment violates the constraints, then so do all those above it.
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{v1 =0} {nn =1} {v2 =0} {va =1}

0

Figure I11.32: Lattice of variable assignments. [source: IQC]
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|1111)
|1110) |1101) |1011) [0111)
|1100) |1010) |1001) |0110) [0101) [0011)
|1000) |0100) |0010) |0001)
|0000)

Figure I11.33: Lattice of binary strings corresponding to all subsets of a 4-
element set. [source: 1QC]

€7. Initialization: The algorithm begins with all the amplitude concen-
trated in the bottom of the lattice, |0---0) (i.e., the empty set of as-
signments).

€8. Movement: The algorithm proceeds by moving amplitude up the lat-
tice, while avoiding assignments that violate the constraints.
That is, we want to move amplitude from a set to its supersets.
For example, we want to redistribute the amplitude from [1010) to
|1110) and |1011).
Hogg has developed several methods.

€9. One method is based on the assumption that the transformation has the
form WDW , where W = H®™" the mn-dimensional Walsh-Hadamard
transformation, and D is diagonal.
The elements of D depend on the size of the sets.

910. Recall (913, p. 136) that

Wiz) = —— 37 ()7]2).
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As shown in Sec. A.2.h (p. 73), we can derive a matrix representation
for W:

Wip = GIWIk)

Note that k- j = |k N j|, where on the right-hand side we interpret the
bit strings as sets.

Constraints: The general approach is to try to stear amplitude away
from sets that violate the constraints, but the best technique depends
on the particular problem.

One technique is to invert the phase on bad subsets so that they tend
to cancel the contribution of good subsets to supersets.

This could be done by a process like Grover’s algorithm using a predi-
cate that tests for violation of constraints.

Another approach is to assign random phases to bad sets.

Efficiency: It is difficult to analyze the probability that an iteration
of a heuristic algorithm will produce a solution.

Therefore their efficiency is usually evaluated empirically.

This technique will be difficult to apply to quantum heuristic search
until larger quantum computers are available.

Recall that classical computers require exponential time to simulate
quantum systems.

Hogg’s algorithms: Small simulations indicate that Hogg’s algo-
rithms may provide polynomial speedup over Grover’s algorithm.



