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D.5 Quantum error correction

This lecture follows IQC.

D.5.a Motivation

¶1. Quantum coherence is very di�cult to maintain for long.
Even weak interactions with the environment can a↵ect the quantum
state, and we’ve seen that the amplitudes of the quantum state are
critical to quantum algorithms.

¶2. On classical computers, bits are represented by very large numbers of
particles (but that is changing).
On quantum computers, qubits are represented by atomic-scale states
or objects (photons, nuclear spins, electrons, trapped ions, etc.)
They are very likely to become entangled with computationally irrele-
vant states of the computer and its environment, which are out of our
control.

¶3. Quantum error correction is similar to classical error correction in that
additional bits are introduced, creating redundancy that can be used
to correct errors.

¶4. (a) It is di↵erent from classical error correction in that we want to
restore the entire quantum state (i.e., the continuous amplitudes), not
just 0s and 1s. Further, errors are continuous and can accumulate.
(b) Also, it must obey the no-cloning theorem.
(c) And measurement destroys quantum information.

D.5.b Effect of decoherence

¶1. Ideally the environment |⌦i, considered as a quantum system, does not
interact with the computational state.
But if it does, the e↵ect can be categorized as a unitary transformation
on the environment-qubit system:
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Figure III.34: E↵ects of decoherence on a qubit. On the left is a qubit |xi
that is mostly isoloated from its environment |⌦i. On the right, a weak
interaction between the qubit and the environment has led to a possibly
altered qubit |yi and a correspondingly (slightly) altered environment |⌦xyi.

¶3. If the entanglement is small, then k⌦
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¶4. Define decoherence operators Dxy|⌦i = |⌦xyi, for x, y 2 2.

¶5. Then the evolution of the joint system is defined by the equations:
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¶6. Alternately, we can define it:
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¶7. It’s easy to show (exercise):
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¶9. Therefore the e↵ect of decoherence on the qubit can be described by a
linear combination of the Pauli matrices.
This is a distinctive feature about quantum errors: they have a finite
basis, and because they are unitary, they are therefore invertible.

¶10. Single qubits: Single-qubit errors can be characterized in terms of
a linear combination of the Pauli matrices (which span the space of
2 ⇥ 2 self-adjoint unitary matrices: ¶9, p. 110): I (no error), X (bit
flip error), Y (phase error), and Z = Y X (bit flip phase error).

¶11. Therefore a single qubit error is represented by e
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ej�j, where the �j are the Pauli matrices (¶6, p. 110).

D.5.c Correcting the quantum state

¶1. Characterization of errors: We consider a set of unitary “error

operators” Ej, so that the error transformation is a superposition E
def

=P
j ejEj.

¶2. Quantum registers: In the more general case of quantum registers,
the Ej a↵ect the entire register.

¶3. Encoding: An n-bit register is encoded in n+m bits, where the extra
bits are used for error correction.

¶4. Let y = C(x) be the n+m bit code for x.

¶5. Suppose ỹ is the result of error type k, ỹ = Ek(y).

¶6. Syndrome: Let k = S(ỹ) be a function that determines the error
syndrome, which identifies the error Ek from the corrupted code.

¶7. Correction: Since the errors are unitary, and the syndrome is known,
we can invert error and thereby correct it: y = E�1

S(ỹ)

(ỹ).
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Figure III.35: Circuit for quantum error correction. | i is the n-qubit quan-
tum state to be encoded by C, which adds m error-correction qubits to yield
the encoded state |�i. E is a unitary superposition of error operators Ej,
which alter the quantum state to |�̃i. S is the syndrome extraction operator,
which computes a superposition of codes for the errors E. The syndrome
register is measured, to yield a particular syndrome code j⇤, which is used to
select a corresponding inverse error transformation E�1

j⇤ to correct the error.

¶8. Quantum case: Now consider the quantum case, in which the state
| i is a superposition of basis vectors, and the error is a superposition
of error types, E =

P
j ejEj.

See Fig. III.35.

¶9. Encoding: The encoded state is |�i def

= C| i.

¶10. Let |�̃i = E|�i be the code corrupted by error.

¶11. Syndrome extraction: Apply the syndrome extraction operator to
the encoded state, augemented with enough qubits to represent the set
of syndromes. This yields a superposition of syndromes:

S|�̃,0i = S

 X
j

ejEj|�i
!

⌦|0i =
X

j

ej(SEj|�i|0i) =
X

j

ej(Ej|�i|ji).

¶12. Measurement: Measure the syndrome register to obtain some j⇤ and
the collapsed state Ej⇤ |�i|j⇤i.

¶13. Correction: Apply E�1

j⇤ to correct the error.
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428 Quantum error-correction

the logical |0〉 and logical |1〉 states, not the physical zero and one states. A circuit
performing this encoding is illustrated in Figure 10.2.

• •

⊕

⊕

|ψ〉

|0〉

|0〉
Figure 10.2. Encoding circuit for the three qubit bit flip code. The data to be encoded enters the circuit on the top
line.

Exercise 10.1: Verify that the encoding circuit in Figure 10.2 works as claimed.

Suppose the initial state a|0〉 + b|1〉 has been perfectly encoded as a|000〉 + b|111〉.
Each of the three qubits is passed through an independent copy of the bit flip channel.
Suppose a bit flip occurred on one or fewer of the qubits. There is a simple two stage
error-correction procedure which can be used to recover the correct quantum state in
this case:

(1) Error-detection or syndrome diagnosis: We perform a measurement which tells us
what error, if any, occurred on the quantum state. The measurement result is called
the error syndrome. For the bit flip channel there are four error syndromes,
corresponding to the four projection operators:

P0 ≡ |000〉〈000| + |111〉〈111| no error (10.5)

P1 ≡ |100〉〈100| + |011〉〈011| bit flip on qubit one (10.6)

P2 ≡ |010〉〈010| + |101〉〈101| bit flip on qubit two (10.7)

P3 ≡ |001〉〈001| + |110〉〈110| bit flip on qubit three. (10.8)

Suppose for example that a bit flip occurs on qubit one, so the corrupted state is
a|100〉 + b|011〉. Notice that 〈ψ|P1|ψ〉 = 1 in this case, so the outcome of the
measurement result (the error syndrome) is certainly 1. Furthermore, the syndrome
measurement does not cause any change to the state: it is a|100〉 + b|011〉 both
before and after syndrome measurement. Note that the syndrome contains only
information about what error has occurred, and does not allow us to infer anything
about the value of a or b, that is, it contains no information about the state being
protected. This is a generic feature of syndrome measurements, since to obtain
information about the identity of a quantum state it is in general necessary to
perturb that state.

(2) Recovery: We use the value of the error syndrome to tell us what procedure to use
to recover the initial state. For example, if the error syndrome was 1, indicating a
bit flip on the first qubit, then we flip that qubit again, recovering the original state
a|000〉 + b|111〉 with perfect accuracy. The four possible error syndromes and the
recovery procedure in each case are: 0 (no error) – do nothing; 1 (bit flip on first
qubit) – flip the first qubit again; 2 (bit flip on second qubit) – flip the second qubit

Figure III.36: Quantum encoding circuit for triple repetition code. [source:
NC]

¶14. Note that although there was a superposition of errors, we only have
to correct one of them to get the original state back. This is because
measurement collapses into a state a↵ected by just that one error.

D.5.d Example

¶1. Encoding: For an example, suppose we use simple triple redundancy,

C|0i = |000i, C|1i = |111i.

This is not a sophisticated code! It’s called a repetition code.
The three-qubit codes are called logical zero and logical one.
See Fig. III.36

¶2. It can correct single bit flips (by majority voting), which are represented
by the operators:
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¶3. Syndrome: The following works as a syndrome extraction operator:
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The �s compare each pair of bits, and so the � will be zero if the two
bits are the same (the majority).
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¶4. Correction: The following table shows the bit flipped (if any), the
correponding syndrome, and the operator to correct it (which is the
same as the operator that caused the error):

bit flipped syndrome error correction
none |000i I ⌦ I ⌦ I

1 |110i I ⌦ I ⌦ X
2 |101i I ⌦ X ⌦ I
3 |011i X ⌦ I ⌦ I

¶5. Example state: Suppose we want to encode the state | i = 1p
2

(|0i �
|1i).

¶6. Code: Its code is |�i = 1p
2

(|000i � |111i).

¶7. Error: Suppose the following error occurs: E = 4

5
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5

I⌦X⌦I
(that is, the bit 3 flips with probability 16/25, and bit 2 with probability
9/25).

¶8. Error state: The resulting error state is
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¶9. Syndrome: Applying the syndrome extraction operator yields:
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¶10. Measurement: Measuring the syndrome register yields either |011i
(representing an error in bit 3) or |101i (representing an error in bit 2).
Suppose we get |011i. The state collapses into:

1p
2
(|100i � |011i) ⌦ |011i.

Note that we have projected into a subspace for just one of the two
bit-flip errors that occurred (the flip in bit 3).

¶11. Correction: The measured syndrome |011i tells us to apply X⌦I⌦I
to the first three bits, which restores |�i:

(X ⌦ I ⌦ I)
1p
2
(|100i � |011i) = 1p

2
(|000i � |111i) = |�i.

D.5.e Discussion

¶1. Shor code: There is a nine-qubit code, called the Shor code, that
can correct arbitrary errors on a single qubit, even replacing the entire
qubit by garbage.

¶2. An entire continuum of errors can be corrected by correcting only a
discrete set of errors.
This works in quantum computation, but not classical analog comput-
ing.

¶3. Fault-tolerant quantum computation: What do we do about noise
in the gates that do encoding and decoding?
It is possible to do fault-tolerant quantum computation.
“Even more impressively, fault-tolerance allow us to perform logical
operations on encoded quantum states, in a manner which tolerates
faults in the underlying gate operations.” [NC 425]

¶4. Threshold theorem: “provided the noise in individual quantum gates
is below a certain constant threshold it is possible to e�ciently perform
an arbitrarily large quantum computation.” [NC 425]10

10See NC §10.6.4.


