F. UNIVERSAL QUANTUM COMPUTERS 177

F

q1.

Q.

qs.

Universal quantum computers

Power: A natural question is: What is the power of a quantum com-
puter?
Is it super-Turing or sub-Turing?

Efficiency: Another question is: What is its efficiency?
Can it solve NP problems efficiently?

Models: There are a number of universal QC models for both theo-
retical and practical purposes.

F.1 Feynman on quantum computation

F.1l.a SIMULATING QUANTUM SYSTEMS

This section is based primarily on F82.

q1.

Q.

9.

q.

qs.

In 1982 Richard Feynman discussed what would be required to simulate
a quantum mechanical system on a digital computer.

Probabilistic classical system: First he considered a classical prob-
abilistic physical system.

Suppose we want to use a conventional computer to calculate the prob-
abilities as the system evolves in time.

Suppose the system comprises R particles that are confined to N loca-
tions in space.

Each configuration ¢ has a probability p(c).

There are N possible configurations, since a configuration assigns a
location N to each of the R particles (i.e., the number of functions
R — N).

Therefore to simulate all the possibilities would require keeping track
of a number of quantities (the probabilities) that grows exponentially
with the size of the system.

This is infeasible.

So let’s take a weaker goal: we want a simulator that exhibits the same
probabilistic behavior as the system.

178

q96.

q7.

qs.

9.

q10.

CHAPTER III. QUANTUM COMPUTATION

So if we run both of them over and over, we will see the same distribu-
tion of behaviors.
This we can do.

You can implement this by having a nondeterministic computer that
has the same state transition probabilities as the primary system.

Quantum system: Let’s try the same trick with quantum systems,
i.e., have a conventional computer that exhibits the same probabilities
as the quantum system.

If you do the math (which we won’t), it turns out that this is impossible.
The reason is that, in effect, some of the state transitions would have
to have what amount to negative probabilities, and we don’t know how
to do this classically.

We've seen how in QM, probabilities can in effect cancel by destructive
interference of the wavefunctions.

The conclusion is that no conventional computer can efficiently simulate
a quantum computer.

Therefore, if we want to (efficiently) simulate any physical system, we
need a quantum computer.

F.1.b UNIVERSAL QUANTUM COMPUTER

This section is based primarily on F85.

qL.

Q.

qs.

9.

In 1985 Feynman described several possible designs for a universal
quantum computer.

He observes that NOT, CNOT, and CCNOT are sufficient for any logic
gate, as well as for COPY and EXCHANGE, and therefore for universal
computation.

Adder: He exhibits circuits for a simple adder (Fig. II1.38) and a full
adder (Fig. I11.39).

Hamiltonian: The goal is to construct a Hamiltonian to govern the
operation of a quantum computer.

F. UNIVERSAL QUANTUM COMPUTERS 179

a a
b SUM
o % CARRY

Figure I11.38: Simple adder using reversible logic. [fig. from F85]

a a---0Q---a=a’
b K bi s s'-—-i-——b = b
c [i & i SUM = ¢’
d=o aL ¢ I CARRY =d’

Figure I11.39: Full adder using reversible logic. [fig. from F85]

qs.

96.

q7.

Primitive operations: F describes quantum logic gates in terms of
two primitive operations, which change the state of an “atom” (two-
state system or “wire”).

Letters near the beginning of the alphabet (a, b, ¢, ...) are used for data
or register atoms, and those toward the end (p,q,r,...) for program
atoms (which are used for sequencing operations).

In this simple sequential computer, only one program atom is set at a
time.

Annihilation operator: For a single line a, the annihilation operator

is defined:
01
a:(o O)_|0Xl"

The annihilator changes the state |1) to |0). Applied to |0), it leaves
the state unchanged and returns the zero wvector 0 (which is not a
meaningful quantum state).

It matches |1) and resets it to |0).

It’s not unitary (because not norm preserving).

This is a “partial NOT” operation.

180

qs.

19.

q10.

q11.

CHAPTER III. QUANTUM COMPUTATION

Creation operation: Its conjugate it the creation operation

a*—((l) 8)—|1x0\.

The creator transforms |0) to |1), but leaves |1) alone, returning 0.
It matches |0) and resets it to |1).

Note that a* is the adjoint (conjugate transpose) of a.

This is the other half of NOT.

Number operation or 1-test: Consider!!

. (00
Na—aa—(o 1)—|1)(1|.

This has the effect of returning |1) for input |1), but 0 for |0):
No = a’a = [1)(0[[0)(1] = [1)(0 [0)(1] = [1)(1].

Thus it’s a test for |1).
(This is a partial identity operation.)

0-test: Similarly,!?

. (10
1—Na—aa—(0 0)—|0X0\-

(Feynman writes this 1 — N, because he writes 1 = [.)

This has the effect of returning |0) for input |0), but 0 for |1).
This is test for |0).

(This is the rest of the identity operation.)

Universality: The two operations a and a* are sufficient for creating
all 2 x 2 matrices, and therefore all transformations on a single qubit.
Note that

w x * * *
():waa +xa+ya + za a.
Yy oz

1This matrix is not the same as that given in F82 and F85, since Feynman uses the
basis [1) = (1,0)T,]0) = (0,1)7.

12This matrix is different from that given in F82 and F85, as explained in the previous
footnote.

UNIVERSAL QUANTUM COMPUTERS 181

c
l 0 q IFc=1 GO p TOq AND PUT ¢c=0
IFc=0G0 pTOr AND PUT ¢ = |
r IFc=1GOr TOp AND PUT ¢=0
H=q"cp + r'c*p IF ¢c=0 GO q TOp AND PUT c= |
+ p*c*q + p*cr

Figure I11.40: Switch element. 0/1 annotations on the wires show the ¢
values. [fig. from F85]

q12

q13.

q14.

q15.

. Negation: F writes A, for the negation operation applied to a.
Obviously, A, = a + a* (it annihilates |1) and creates from |0))
and 1 = aa* + a*a (it passes |0) and passes |1).

Prove that A,A, =1 (exercise).

CNOT: F writes A,; for the CNOT operation applied to lines a and
b.

Ayp = a*a(b+b*) + aa”.

Notice that this is a tensor product on the register |a, b):

Ayp=0a"a® (b+0b")+aa* ® 1.

You can write this formula NV, ® A, + (1 — N,) ® 1. That is, if N,
detects [1), then it negates b.

If 1 — N, detects |0), then it leaves b alone.

CCNOT: F writes Ay for the CCNOT operation applied to lines a,
b, and c.

Awpe =14 a*ab*b(c + ¢* — 1) (exercise).

This formula is more comprehensible in this form:

Awpe =1+ NyNy(A. — 1).

SWITCH: One of Feynman’s universal computers is based on only
two logic gates, NOT and SwiTcH (Fig. I11.40).
If ¢ = |1), then the “cursor” (locus of control) at p moves to ¢, but if

182

CHAPTER III. QUANTUM COMPUTATION

a a
S t
lo MINOT b | Ol
| * |
=b+b
S 0 0 t
| SN | tN |

Figure I11.41: CNOT implemented by switches. 0/1 annotations on the wires
show the a values. [fig. from F85]

q16.
q17.

q18.

q19.

20.

q21.

¢ =10) it moves to r.
It also negates ¢ in the process.

It’s also reversible (see Fig. I11.40).

The switch is a tensor product on |¢, p, g, r):
g ep+rictp+ [ptctq + prerl.

(The bracketed expression is just the complex conjugate of the first
part, required for reversibility.) Read the factors in each term from
right to left:

(1) ¢*cp: if p and c are set, then unset them and set gq.

(2) r*c*p: if p is set and c is not set, the unset p and set ¢ and r.

CNOT: Fig. I11.41 shows CNOT implemented by switches. This is the
controlled-NOT applied to data a, b and sequenced by cursor atoms s, ¢
(= start, terminate).

If @ = 1 the cursor state moves along the top line, and if a = 0 along
the bottom.

If it moves along the top, then it applies b + b* to negate b (otherwise
leaving it alone).

In either case, the cursor arrives at the reversed switch, where sets the
next cursor atom ¢.

UNIVERSAL QUANTUM COMPUTERS 183

f f

< 0 l io COPY
\ | COPY " | ouT
/0 VZIN 0

t—{ NOT f |~ — NOT f

Figure I11.42: Garbage clearer. 0/1 annotations on the wires show the f
values. [fig. from F85]

q22.

F.l.c
q1.

Q.

qs.

We can write it
Hop(s,t) = syas+t a*ty +15,(0+b0")sy + sya*s+t aty +tysy +c.c,

where “c.c” means to add the complex conjugates of the preceding
terms. Read the factors in each term from right to left:

(1) syas: if s and a are set, then unset them and set s);.

(4) sya*s: if s is set and a in unset, then unset s and set sy and a.
(6) tysn: if sy is set, then unset it and set ty.

(3) t3,(b+b*)spr: if sy is set, then unset it, negate b and set ty.

(5) t*aty: if ty and a are set (as a must be to get here), then unset
them and set ¢.

(2) t*a*tp: if tar is set and a is unset (as it must be to get here), then
reverse their states and set t.

(The t}ysy term can be eliminated by setting ty = sy.)

GARBAGE CLEARER

Instead of having a separate copy of the machine to clear out the
garbage, it’s possible to run the same machine backwards (Fig. 111.42).

Initial state: An external register IN contains the input, and the
output register OUT and all machine registers are all Os.

s is the starting program atom.

The flag f is initially 0.

The f = 0 routes control through the reversed switch (setting f = 1)
to CoPY.

184

qA.
qs.

q96.

q7.

qs.

9.

q10.

q11.

q12.

F.2

qL.

.

qs.

CHAPTER III. QUANTUM COMPUTATION

The CorPY box uses CNOTSs to copy the external input into M

M operates, generating the result in an internal register.
M contains garbage.

The f =1 flag directs control into the upper branch (resetting f = 0),
which uses CNOT's to copy the result into the external output register
Ovur.

Control passes out from the upper branch of the switch down and back
into the lower branch, which negates f, setting f = 1.

Control passes back into the machine through the lower switch branch
(resetting f = 0), and backwards through M, clearing out all the
garbage, restoring all the registers to Os.

It passes backwards through the CopPy box, copying the input back
from M to the external input register IN.
This restores the internal register to 0s.

Control passes out through the lower branch of the left switch (setting
f =1), but it negates f again, so f = 0.
It arrives at the terminal program atom t.

At the end of the process, everything is reset to the initial conditions,
except that we have the result in the OUT register.

Subroutines etc.: F discusses how to do subroutines and other pro-
gramming constructs.

Benioff’s quantum Turing machine

In 1980 Paul Benioff published the first design for a universal quantum
computer, which was based on the Turing machine.

Tape: The tape is represented by a finite lattice of quantum spin
systems with eigenstates corresponding to the tape symbols.
(Therefore, he cannot implement an open-ended TM tape, but neither
can an ordinary digital computer.)

Head: The head is a spinless system that moves along the lattice.

F. UNIVERSAL QUANTUM COMPUTERS 185

q.
qs.

16.
qr.

qs.

State: The state of the TM was represented by another spin system.

He defined unitary operators for doing the various operations (e.g.,
changing the tape).

In 1982 he extended his model to erase the tape, as in Bennett’s model.
Computation step: Each step was performed by measuring the tape
state under the head and the internal state (thus collapsing them) and

using this to control the unitary operator applied to the tape and state.

As a consequence, the computer does not make much use of superpo-
sition.

F.3 Deutsch’s universal quantum computer

This section is based on Deutsch, D., “Quantum theory, the Church-Turing
principle, and the universal quantum computer. Proc. Royal Soc. London
A, 400 (1985), pp. 97-119.

q1.

Q.

qs.

q.

95.

16.

Benioft’s computer is effectively classical; it can be simulated by a
classical TM.

Feynman’s construction is not a true universal computer, since you
need to construct it for each computation, and it’s not obvious how to
get the required dynamical behavior.

Deutsch seeks a broader definition of quantum computation, and a
universal quantum computer Q.

Processor: “The processor consists of M 2-state observables, {n;}”
(1 € M), where M = {0,..., M — 1}. Collectively they are called 1.

Memory: “The memory consists of an infinite sequence {m;} (i € Z)
of 2-state observables.” Collectively the sequence is called .

Tape position: An observable #, with spectrum 7Z, represents the
tape position (address) of the head.

186

qr.

qs.

19.

q10.

q11.

q12.

CHAPTER III. QUANTUM COMPUTATION

Computational basis states: The computational basis states have
the form:

def
|z m) = |20, 00,0, Mpr_15 .o, T, Mg, M, - .).
Here the eigenvectors are labeled by their eigenvalues x, n, and m.

Dynamics: The dynamics of computation is described by a unitary
operator U:

[¥(nT)) = U"[4(0)).

Initial tape: Initially, only a finite number of these are prepared in a
non-zero state.

11(0)) = Z)\m\O;O;m>, where Z Anl? =1,

“where only a finite number of the A,, are non-zero and)\,, vanishes
whenever an infinite number of the m are non-zero.”
Note that this may be a superposition of initial tapes.

The non-zero entries are the program and its input.

Unitary operator: The matrix elements of U (relating the new state
to the current state) have the form:

(z/;n'sm’ | U | z;n;m)
= [657 U (0 mln, my) + 657U (0 ml |, my)] T [o
y#T

U* and U~ represent moves to the right and left, respectively.

The first two s ensure that the tape position cannot move by more
than one position in a step.

The final product of deltas ensures that all the other tape positions are
unchanged; it’s equivalent to: Vy # z : my, = m,.

The U™ and U~ functions define the actual transitions of the machine
in terms of the processor state and the symbol under the tape head.
Each choice defines a quantum computer Q[U*, U~].

F. UNIVERSAL QUANTUM COMPUTERS 187

q13.

q14.

Halting: The machine cannot be observed before it has halted, since
it will generally alter its state.

Therefore one of the processor’s bits is chosen as a halt indicator.

It can be observed from time to time without affecting the computation.

Power: Q can simulate TMs, but also any other quantum computer
to arbitrary precision.

It can simulate any finitely realizable physical system to arbitrary pre-
cision.

It can simulate some physical systems that go beyond the power of
TMs (hypercomputation).

