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B Thermodynamics of computation

B.1 Von Neumann-Landaur Principle

B.1.a Information and entropy

¶1. Entropy: A quick introduction/review of the entropy concept. We
will look at it in more detail soon (Sec. B.2).

¶2. Information content: The information content of a signal (message)
measures our “surprise,” i.e., how unlikely it is.
I(s) = � logb P{s}, where P{s} is the probability of s.
We take logs so that the information content of independent signals is
additive.
We can use any base, with corresponding units bits, nats, and dits (also,
hartleys, bans) for b = 2, e, 10.

¶3. 1 bit: Therefore, if a signal has a 50% probability, then it conveys one
bit of information.

¶4. Entropy of information: The entropy of a distribution of signals is
their average information content:

H(S) = E{I(s) | s 2 S} =
X
s2S

P{s}I(s) = �
X
s2S

P{s} logP{s}.

Or more briefly, H = �
P

k pk log pk.

¶5. Shannon’s entropy: According to a well-known story, Shannon was
trying to decide what to call this quantity and had considered both
“information” and “uncertainty.” Because it has the same mathemat-
ical form as statistical entropy in physics, von Neumann suggested he
call it “entropy,” because “nobody knows what entropy really is, so in
a debate you will always have the advantage.”8

(This is one version of the quote.)

¶6. Uniform distribution: If there are N signals that are all equally
likely, then H = logN .
Therefore, if we have eight equally likely possibilities, the entropy is

8https://en.wikipedia.org/wiki/History of entropy (accessed 2012-08-24).
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H = lg 8 = 3 bits.
A uniform distribution maximizes the entropy (and minimizes the abil-
ity to guess).

¶7. Describing state: In computing, we are often concerned with the
state of the computation, which is realized by the state of a physical
system.
Consider a physical system with three degrees of freedom (DoF), each
with 1024 possible values.
There are N = 10243 = 230 possible states, each describable by three
10-bit integers.

¶8. If we don’t care about the distance between states (i.e., distance on each
axis), then states can be specified equally well by six 5-bit numbers or
30 bits, etc. (or 30 log

10

2 ⇡ 9.03 digits).
Any scheme that allows us to identify all 230 states will do.
There are 24 binary degrees of freedom.

¶9. In computing we often have to deal with things that grow exponentially
or are exponentially large (due to combinatorial explosion), such as
solution spaces.
(For example, NP problems are characterized by the apparent necessity
to search a space that grows exponentially with problem size.)

¶10. In such cases, we are often most concerned with the exponents and how
they relate.
Therefore it is convenient to deal with their logarithms (i.e., with log-
arithmic quantities).

¶11. The logarithm represents, in a scale-independent way, the degrees of
freedom generating the space.

¶12. Indefinite logarithm:9 Di↵erent logarithm bases amount to di↵erent
units of measurement for logarithmic quantities (such as information
and entropy).
As with other quantities, we can leave the units unspecified, so long as

9Frank (2005a) provides a formal definition for the indefinite logarithm. I am using
the idea less formally, an “unspecified logarithm,” whose base is not mentioned. This is a
compromise between Frank’s concept and familiar notation; we’ll see how well it works!
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we do so consistently.
I will use the notation “log x” for an indefinite logarithm, that is, a
logarithm with an unspecified base.
When I mean a specific base, I will write ln x, lg x, log

10

x, etc.

¶13. lg x = log x/ log 2, lnx = log x/ log e, etc.
(The units can be defined bit = log 2, nat = log e, digit = log 10, etc.)

B.1.b The von Neumann-Landauer bound

¶1. Thermodynamic entropy: Thermodynamic entropy is unknown in-
formation residing in the physical state.
Macroscopic thermodynamic entropy S is related to microscopic in-
formation entropy H by Boltzmann’s constant, which expresses the
entropy in thermodynamical units (energy over temperature).
If H is measured in nats, then S = k

B

H = k
B

lnN .
When using indefinite logarithms, I will drop the “B” subscript: S =
kH = k logN .
The physical dimensions of entropy are usually expressed as energy over
temperature (e.g., joules per kelvin), but the dimension of temperature
is energy per DoF (measured logarithmically), so the fundamental di-
mension of entropy is degrees of freedom, as we would expect.
(There are technical details that I am skipping.)

¶2. Macrostates and microstates: Consider a macroscopic system com-
posed of many microscopic parts (e.g., a fluid composed of many molecules).
In general a very large number of microstates (or microconfigurations)
— such as positions and momentums of molecules — will correspond
to a given macrostate (or macroconfiguration) — such as a combination
of pressure and termperature.
For example, with m = 1020 particles we have 6m degrees of freedom,
and a 6m-dimensional phase space.

¶3. Microstates representing a bit: Suppose we partition the microstates
of a system into two macroscopically distinguishable macrostates, one
representing 0 and the other representing 1.
For example, whether the electrons are on one plate of a capacitor or
the other.
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Figure II.3: Physical microstates representing logical states. Setting the bit
decreases the entropy: �H = lgN � lg(2N) = �1 bit. That is, we have one
bit of information about its microstate.

¶4. Suppose N microconfigurations correspond to each macroconfiguration
(Fig. II.3).
This could be all the positions, velocities, and spins of the many elec-
trons, which we don’t care about and cannot control individually.

¶5. If we confine the system to one half of its microstate space, to represent
a 0 or a 1, then the entropy (average uncertainty in identifying the
microstate) will decrease by one bit.
We don’t know the exact microstate, but at least we know which half
of the statespace it is in.

¶6. IBDF and NIBDF: In general, in physically realizing a computation
we distinguish information-bearing degrees of freedom (IBDF), which
we control, and non-information-bearing degrees of freedom, which we
do not control (Bennett, 2003).

¶7. Erasing a bit: Consider the erasing or clearing a bit (i.e., setting it
to 0, no matter what its previous state).

¶8. We are losing one bit of physical information. The physical information
still exists, but we have lost track of it.

Suppose we have N physical microstates per logical macrostate (logical
0 or logical 1).
Before the bit is erased it can be in one of 2N possible microstates.
There are only N microstates representing its final state.
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Figure II.4: Thermodynamics of erasing a bit. On the left is the initial
state (time t), which may be logical 0 or logical 1; on the right (time t + 1)
the bit has been set to logical 0. In each case there are N microstates
representing each prior state, so a total of 2N microstates. However, at time
t + 1 the system must be on one of N posterior microstates. Therefore N
of the microstate trajectories must exit the defined region of phase space
by expanding into additional, uncontrolled degrees of freedom. Therefore
entropy of the environment must increase by at least �S = k log(2N) �
k logN = k log 2. We lose track of this information because it passes into
uncontrolled degrees of freedom.

The laws of physics are reversible,10 so they cannot lose any informa-
tion.
Physical information can’t be destroyed, so it must go into NIBDF
(e.g., the environment) (Fig. II.4).
The trajectories have to expand into other DoF (NIBDF) to maintain
the phase space volume.

¶9. The information lost, or dissipated into NIBDF (typically as heat), is
�S = k log(2N) � k logN = k log 2.
(�S = k

B

ln 2 ⇡ 10 yJ/K.)
Therefore the increase of energy in the device’s environment is �Q =
�S ⇥ T

env

= k
B

T
env

ln 2 ⇡ 0.7kT
env

.
At 300K, k

B

T
env

ln 2 ⇡ 18 meV ⇡ 3 ⇥ 10�9 pJ = 3 zJ

¶10. von Neumann – Landauer bound: We will see that this is the min-
imum energy dissipation for any irreversible operation (such as erasing

10This is true in both classical and quantum physics. In the latter case, we cannot have
2N quantum states mapping reversibly into only N quantum states.
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a bit).
It’s called the von Neumann – Landauer (VNL) bound (or sometimes
simply the Landauer bound).
VN suggested the idea in 1949, but it was published first by Rolf Lan-
dauer (IBM) in 1961.11

¶11. “From a technological perspective, energy dissipation per logic oper-
ation in present-day silicon-based digital circuits is about a factor of
1,000 greater than the ultimate Landauer limit, but is predicted to
quickly attain it within the next couple of decades.” (Berut et al.,
2012)
That is, current circuits are about 18 eV.

¶12. Experimental confirmation: In research reported in March 2012
(Berut et al., 2012) confirmed experimentally the Landauer Principle
and showed that it is the erasure that dissipates energy.

¶13. They trapped a 2µ silica ball in either of two laser traps, representing
logical 0 and logical 1.
For storage, the potential barrier was greater than 8k

B

T .
For erasure, the barrier was lowered to 2.2k

B

T by decreasing the power
of the lasers and tilting the device to put it into the logical 0 state.
See Fig. II.5.

¶14. At these small sizes, heat is a stochastic property, so the dissipated
heat was computed by averaging over multiple trials the trajectory of
the particle:

hQi =
⌧

�
Z ⌧

0

ẋ(t)
@U(x, t)

@x
dt

�
x

.

¶15. “incomplete erasure leads to less dissipated heat. For a success rate of
r, the Landauer bound can be generalized to”

hQir
Landauer

= kT [log 2+r log r+(1�r) log(1�r)] = kT [log 2�H(r, 1�r)].

“Thus, no heat needs to be produced for r = 0.5” (Berut et al., 2012).

11See Landauer (1961), reprinted in Le↵ & Rex (1990) and Le↵ & Rex (2003), which
include a number of other papers analyzing the VNL principle.
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Figure II.5: Erasing a bit by changing potential barrier. (Figure from Berut
et al. (2012).)
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B.1.c Irreversible operations

¶1. Macroscopic and microscopic entropy: Suppose the phase space
is divided into M macrostates of size N

1

, N
2

, . . . , NM , where N = N
1

+
N

2

+ · · · +NM .

¶2. Let pij be the probability the device is in microstate i of macrostate j.
The total entropy is

S = �k
X
ij

pij log pij. (II.2)

¶3. We can separate this into the macroscopic entropy associated with the
macrostates (IBDF) and the microscopic entropy associated with the
microstates (NIBDF).

¶4. Let Pj =
PN

j

i=1

pij be the probability of being in macrostate j.
Then Eq. II.2 can be rearranged (exercise):

S = �k
X

j

Pj logPj � k
X

j

Pj

N
jX

i=1

pij

Pj

log
pij

Pj

= S
i

+ S
h

.

The first term is the macrostate entropy (IBDF):

S
i

= �k
X

j

Pj logPj.

The second is the microstate entropy (NIBDF):

S
h

= �k
X

j

Pj

N
jX

i=1

pij

Pj

log
pij

Pj

.

¶5. When we erase a bit, we go from a maximum S
i

of 1 bit (if 0 and 1 are
equally likely), to 0 bits (since there is no uncertainty).
Thus we lose one bit, and the macrostate entropy decreases �S

i

=
�k log 2.
Since according to the Second Law of Thermodynamics �S � 0, we
have a minimum increase in microstate entropy, �S

h

� k log 2.
Typically this is dissipated as heat, Q � kT log 2.
The information becomes inaccessible, unusable.
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¶6. The actual entropy decrease can be less than 1 bit if the 0 and 1 are
not equally likely initial states.

¶7. Standard logic gates: The standard logic gates (And, Or, Xor,
Nand, etc.) have two input bits and one output bit. Therefore the
output will have lower entropy than the input, and so these gates must
dissipate at least 1 bit of entropy, kT log 2 energy.

¶8. Consider And. If the four inputs 00, 01, 10, 11, are equally likely, then
the input entropy is S

i

= 2 bits.
However the output entropy will be S

o

= �(1/4) lg(1/4)�(3/4) lg(3/4) =
0.811, so the entropy lost is 1.189 bits.
For each gate, we can express S

o

in terms of the probabilities of the
inputs and compute the decrease from S

i

(exercise).

¶9. If the inputs are not equally likely, then the input entropy will be less
than 2 bits, but we will still have S

i

> S
o

and energy dissipated.
(Except in a trivial, uninteresting case. What is it?)

¶10. Irreversible operations: More generally, any irreversible operation
(non-invertible function) will lose information, which has to be dissi-
pated into the environment.
If the function is not one-to-one (injective), then at least two inputs
map to the same output, and so information about the inputs is lost.

¶11. Assignment operation: Changing a bit, that is, overwriting a bit
with another bit, is a fundamental irreversible operation, subject to
the VNL limit.

¶12. Convergent flow of control: When two control paths join, we forget
where we came from, and so again we must dissipate at least a bit’s
worth of entropy (Bennett, 2003).

¶13. Reversible operations: The foregoing suggests that reversible oper-
ations might not be subject to the VNL limit, and this is in fact the
case, as we will see.

¶14. Maxwell’s Demon: The preceding observations have important con-
nections with the problem of Maxwell’s Demon and its resolution.
Briefly, the demon has to reset its mechanism after each measurement
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in preparation for the next measurement, and this dissipates at least
kT log 2 energy into the heat bath for each decision that it makes.
The demon must “pay” for any information that it acquires.
Therefore, the demon cannot do useful work.
Further discussion is outside the scope of this class, so if you are in-
terested, please see Le↵ & Rex (2003) and Le↵ & Rex (1990) (which
have a large intersection), in which many of the papers on the topic are
collected.


