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Figure I1.10: Symbol for unit wire. (Fredkin & Toffoli, 1982)
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Figure II.11: Fredkin gate or CSWAP (conditional swap): (a) symbol and
(b) operation.

C.3 Unit wire

€1. Information storage in one reference frame may be information trans-
mission in another.
E.g., leaving a note on a table in an airplane (at rest with respect to
earth or not, or to sun, etc.).

2. The unit wire moves one bit of information from one space-time point

to another space-time point separated by one unit of time. See Fig.
I1.10.

93. State: “The value that is present at a wire’s input at time ¢ (and at
its output at time ¢t 4 1) is called the state of the wire at time t.”

94. It is invertible and conservative (since it conserves the number of 0Os
and 1s in its input).
(Note that there are mathematically reversible functions that are not
conservative, e.g., NOT.)

C.4 Fredkin gate

q1. Conservative logic gate: Any Boolean function that is invertible
and conservative.
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Figure I1.12: Alternative notations for Fredkin gate.
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Conditional rerouting: Since the number of 1s and 0Os is conserved,
conservative computing is essentially conditional rerouting

Rearranging vs. rewriting: Conventional models of computation
are based on rewriting

(e.g., TMs, lambda calculus, register machines, term rewriting systems,
Post and Markov productions).

But we have seen that overwriting dissipates energy (and is non-conservative).

In conservative logic we rearrange bits without creating or destroying
them.
(No infinite “bit supply” and no “bit bucket.”)

Fredkin gate: The Fredkin gate is a conditional swap operation (also
called CSWAP):

(0,a,b) — (0,a,b),
(1,a,b) — (1,b,a).

The first input is a control signal and the other two are data or controlled
signals.

Here, 1 signals a swap, but Fredkin’s original definition used 0 to signal
a swap.

See Fig. I1.11 and Fig. I11.14. Fig. 11.12 shows alternative notations for
the Fredkin gate.

Note that it is reversible and conservative.

Universal: The Fredkin gate is a universal Boolean primitive for con-
servative logic.
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Figure I1.13: “(a) closed and (b) open conservative-logic circuits.” (Fredkin
& Toffoli, 1982)
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Figure 11.14: (a) Logical behavior of Fredkin gate. (b) Implementation of

AND gate by Fredkin gate by constraining one input to 0 and discarding two
“garbage” outputs.
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¢ (source)

(argument) z ¢ Y (result)

g (sink)

Figure I1.15: “Realization of f by ¢ using source and sink. The function
¢ : (c,x) — (y,g) is chosen so that, for a particular value of ¢,y = f(x).”
(Fredkin & Toffoli, 1982)

C.5 Conservative logic circuits

1. “A conservative-logic circuit is a directed graph whose nodes are conservative-
logic gates and whose arcs are wires of any length [Fig. I1.13].”

2. We can think of the gate as instantaneous and the unit wire as being
a unit delay, of which we can make a sequence (or imagine intervening
identity gates).

93. Closed vs. open: A closed circuit is a closed (or isolated) physical
system.
An open circuit has external inputs and outputs.

4. The number of outputs must equal the number of inputs.

5. It may be part of a larger conservative circuit, or connected to the
environment.

€6. Discrete-time dynamical system: A conservative-logic circuit is a
discrete-time dynamaical system.

7. Degrees of freedom: The number N of unit wires in the circuit is
its number of DoF.
The numbers of 0s and 1s at any time is conserved, N = Ny + Nj.
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Figure I1.16: “Realization of the (a) OR, (b) NOT, and (c) FAN-OUT func-
tions by means of the Fredkin gate.” (Fredkin & Toffoli, 1982)

C.6
q1.

Q.

qs.

Constants and garbage

The Fredkin gate can be used to compute non-invertible functions such
as AND, if we are willing to provide appropriate constants (called “an-
cillary values”) and to accept unwanted outputs (see Fig. 11.14).

In general, one function can be embedded in another by providing ap-
propriate constants from a source and ignoring some of the outputs,
the sink, which are considered garbage.

However, this garbage cannot be thrown away (which would dissipate
energy), so it must be recycled in some way.

C.7 Universality

q1.

Q.

qs.

9.

OR, NOT, and FAN-OUT: Fig. I1.16 shows Fredkin realizations of
other common gates.

Demultiplexer example: Fig. I1.17 shows a 1-line to 4-line demulti-
plexer.

Hence you can convert conventional logic circuits into conservative cir-
cuits, but the process is not very efficient. It’s better to design the
conservative circuit from scratch.

Universality: “any computation that can be carried out by a con-
ventional sequential network can also be carried out by a suitable
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Figure I1.17: 1-line-to 4-line demultiplexer. The address bits A; 4, =
00,01, 10,11 direct the data bit X into Y, Y;, Y5 or Y3, respectively. Note
that each Fredkin gate uses an address bit to route X into either of two wires.

(Adapted from circuit in Fredkin & Toffoli (1982).)

conservative-logic network, provided that an external supply of con-
stants and an external drain for garbage are available.”
(Will see how to relax these constraints: Sec. C.8)

C.8 Garbageless conservative logic

q1.

Q.

qs.

To reuse the apparatus for a new computation, we will have to throw
away the garbage and provide fresh constants, both of which will dis-
sipate energy.

Exponential growth of garbage: This is a significant problem if
dissipative circuits are naively translated to conservative circuits be-
cause:

(1) the amount of garbage tends to increase with the number of gates,
and

(2) with the naive translation, the number of gates tends to increase
exponentially with the number of input lines.

“This is so because almost all boolean functions are ‘random’, i.e., can-
not be realized by a circuit simpler than one containing an exhaustive
look-up table.”

However there is a way to make the garbage the same size as the input
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Figure I1.18: Composition of combinational conservative-logic network with
its inverse to consume the garbage. [fig. from Fredkin & Toffoli (1982)]

(a) (b) 1) -8

Figure I1.19: The “spy circuit” for tapping into the output. Note that in
the diagram the 0 and 1 constant inputs are switched (or, equivalently, the
a and @ outputs are switched). See also the FAN-OUT circuit in Fig. I1.16.
[fig. from Fredkin & Toffoli (1982)]

(in fact, identical to it).

94. First observe that a combinational conservative-logic network (one with
no feedback loops) can be composed with its inverse to consume all
garbage (Fig. I1.18).

95. The desired output can be extracted by a “spy circuit” (Fig. I11.19).

6. Fig. I1.20 shows the general arrangement for garbageless computation.
This requires the provision of n new constants (n = number output
lines).

€7. Consider the more schematic diagram in Fig. I1.21.

98. Think of arranging tokens (representing 1-bits) in the input registers,
both to represent the input z, but also a supply of n of them in the
black lower square.

€9. Run the computation.
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Figure I1.20: Garbageless circuit. (Fredkin & Toffoli, 1982)
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Figure 11.21: “The conservative-logic scheme for garbageless computation.
Three data registers are ‘shot’ through a conservative-logic black-box F'. The
register with the argument, x, is returned unchanged; the clean register on
top of the figure, representing an appropriate supply of input constants, is
used as a scratchpad during the computation (cf. the ¢ and g lines in Figure
[I1.20]) but is returned clean at the end of the computation. Finally, the
tokens on the register at the bottom of the figure are rearranged so as to
encode the result y and its complement —y” (Fredkin & Toffoli, 1982)
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q10.

q11.

q12.

The input argument tokens have been restored to their initial positions.
The 2n-bit string 00---0011---11 in the lower register has been rear-
ranged to yield the result and its complement yy.

Restoring the 0---01---1 inputs for another computation dissipates
energy.

Feedback: Finite loops can be unrolled, which shows that they can
be done without dissipation.
(Cf. also that billiard balls can circulate in a frictionless system.)

C.9 Ballistic computation

“Consider a spherical cow moving in a vacuum...”

q1.

Q.

9.

q“.

905.

9.

q7.

qs.
q9.

Billiard ball model: To illustrate dissipationless ballistic computa-
tion, Fredkin and Toffoli defined a billiard ball model of computation.

It is based on the same assumptions as the classical kinetic theory of
gasses: perfectly elastic spheres and surfaces.
In this case we can think of pucks on frictionless table.

Fig. I1.22 shows the general structure of the billiard ball model.

1s are represented by the presence of a ball at a location, and Os by
their absence.

Input is provided by simultaneously firing balls into the input ports for
the 1s in the argument.

Inside the box the balls ricochet off each other and fixed reflectors,
which performs the computation.

After a fixed time delay, the balls emerging (or not) from the output
ports define the output.

Obviously the number of 1s (balls) is conserved.

The computation is reversible because the laws of motion are reversible.
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Figure 11.22: Overall structure of ballistic computer. (Bennett, 1982)

9

Figure 11.23: “Billiard ball model realization of the interaction gate.” (Fred-
kin & Toffoli, 1982)
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Figure I1.24: “(a) The interaction gate and (b) its inverse.” (Fredkin &
Toffoli, 1982) Note that the second pg from the bottom should be pg.

§10. Interaction gate: Fig. I1.23 shows the realization of the computa-
tional primitive, the interaction gate.

€11. Fig. I1.24 is the symbol for the interaction gate and its inverse.

€12. Universal: The interaction gate is universal because it can compute
both AND and NOT.

€13. Interconnections: However, we must make provisions for arbitrary
interconnections in a planar grid. So need to implement signal crossover
and control timing.
(This is non-trivial crossover; trivial crossover is when two balls cannot
possibly be at the same place at the same time.)

€14. Fig. I1.25 shows mechanisms for realizing these functions.

€15. Fig. I1.26 shows a realization of the Fredkin gate in terms of multiple
interaction gates. (The “bridge” indicates non-trivial crossover.)

916. Practical problems: Minuscule errors of any sort (position, velocity,
alignment) will accumulate rapidly (by about a factor of 2 at each
collision).

€17. E.g., initial random error of 1/10' in position or velocity (about what
would be expected from uncertainty principle) would lead to a com-
pletely unpredictable trajectory after a few dozen collisions.
It will lead to a Maxwell distribution of velocities, as in a gas.
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Figure I1.25: “The mirror (indicated by a solid dash) can be used to deflect
a ball’s path (a), introduce a sideways shift (b), introduce a delay (c), and
realize nontrivial crossover (d).” (Fredkin & Toffoli, 1982)
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Figure I1.26: Realization of the Fredkin gate in terms of multiple interaction
gates. [NC|




D. SOURCES 5

€18. “Even if classical balls could be shot with perfect accuracy into a perfect
apparatus, fluctuating tidal forces from turbulence in the atmosphere
of nearby stars would be enough to randomize their motion within a
few hundred collisions.” (Bennett, 1982, p. 910)

€19. Various solutions have been considered, but they all have limitations.

€20. “In summary, although ballistic computation is consistent with the laws
of classical and quantum mechanics, there is no evident way to prevent
the signals’ kinetic energy from spreading into the computer’s other
degrees of freedom.” (Bennett, 1982, p. 911)

€21. Signals can be restored, but this introduces dissipation.
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