
Chapter III

Quantum Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. c�2014, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of September 9, 2014.

A Mathematical preliminaries

“[I]nformation is physical, and surprising physical theories such as quantum
mechanics may predict surprising information processing abilities.” (Nielsen
& Chuang, 2010, p. 98)

A.1 Complex numbers

If you go to the course webpage, and look under Quantum Computation in
the Topics section, you will see a link to “complex number review [FFC-
ch4].” Depending on how familiar you are with complex numbers, read or
skim it through section 4.4.2.1 (pp. 41–53). This should tell you all you need
to know (and a little more).

A.2 Linear algebra review

A.2.a Dirac bracket notation

Much of the math of quantum computation is just elementary linear algebra,
but the notation is di↵erent (and of course there is a physical interpretation).
The Dirac bracket notation will seem peculiar if you are not used to it, but
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36 CHAPTER III. QUANTUM COMPUTATION

it is elegant and powerful, as are all good notations. Think of it like a new
programming language.

First, the notation | i represents an n⇥ 1 complex column vector, | i =
(v

1

, . . . , v
n

)T. We pronounce | i “ket psi” or “psi ket.” Normally the vectors
are finite-dimensional, but they can be infinite-dimensional if the vectors have
a finite magnitude (their components are square-summable),

P
k

|v
k

|2 < 1.
The Dirac notation has the advantage that we can use arbitrary names

for vectors, for example:

|excitedi, |zeroi, |onei, |"i, | %i, |1i, |101i, |5i, |f(x)i, |1⌦g(1)i.

It may be easier to remember if you notice that it looks kind of like an arrow;
compare |vi and ~v.

The notation h�| represents a 1⇥n complex row vector, h�| = (u
1

, . . . , u
n

).
We pronounce h | “bra psi” or “psi bra.” If | i = (v

1

, . . . , v
n

)T, then h | =
(v

1

, . . . , v
n

), where v
k

is the complex conjugate of v
k

.
We define the adjoint (conjugate transpose, Hermitian transpose) M † of

a matrix M by
(M †)

jk

= M
kj

.

We pronounce it “M dagger.” Note that corresponding bras and kets are
adjoints: h | = | i† and | i = h |†.

A.2.b Inner product

Suppose |�i = (u
1

, . . . , u
n

)T and | i = (v
1

, . . . , v
n

)T. Then the complex inner
product of the vectors is defined

P
k

u
k

v
k

= h�| | i. Thus, the inner product
of two vectors is the conjugate transpose of the first times the second. This
is the convention in physics, which we will follow; mathematicians usually
put the complex conjugate on the second argument. Since the inner product
multiplies a 1⇥ n matrix by an n⇥ 1 matrix, the result is a 1⇥ 1 matrix, or
scalar. This product is usually abbreviated h� |  i = h�| | i, which can be
pronounced “�-bra ket- ” or “� bra-ket  .” It’s the product of a bra and a
ket.

The complex inner product satisfies several important properties:

1. It is positive definite:

h |  i > 0, if | i 6= 0,

h |  i = 0, if | i = 0.
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2. It has conjugate symmetry: h� |  i = h | �i.

3. It is linear in its second argument:

h� | c i = ch� |  i, for c 2 C,
h� |  + �i = h� |  i+ h� | �i.

Note that conjugate symmetry and linearity in the second argument together
imply that hc� |  i = ch� |  i. The complex inner product is called sesquilin-
ear, which means “one-and-a-half linear” (in contrast to the inner product
of real vectors, which is linear in both arguments, i.e., bilinear).

The norm or magnitude of a vector is defined k| ik =
p

h |  i. A vector
is normalized if k| ik = 1. Note that normalized vectors fall on the surface
of an n-dimensional hypersphere.

A.2.c Bases and Generalized Fourier Series

Vectors |�i and | i are orthogonal if h� |  i = 0. A set of vectors is or-
thogonal if each vector is orthogonal to all the others. An orthonormal (ON)
set of vectors is an orthogonal set of normalized vectors. A set of vectors
|�

1

i, |�
2

i, . . . spans a vector space if for every vector | i in the space there
are complex coe�cients c

1

, c
2

, . . . such that | i =
P

k

c
k

|�
k

i. A basis for a
vector space is a linearly independent set of vectors that spans the space.
Equivalently, a basis is a minimal generating set for the space; that is, all
of the vectors in the space can be generated by linear combinations of the
basis vectors. An (orthonormal) basis for a vector space is an (orthonormal)
set of vectors that spans the space. In general, when I write “basis” I mean
“orthonormal basis.” Any vector in the space has a unique representation as
a linear combination of the basis vectors.

A Hilbert space is a complete inner-product space. “Complete” means
that all Cauchy sequences of vectors (or functions) have a limit in the space.
(In a Cauchy sequence, kx

m

� x
n

k ! 0 as m,n ! 1.) Hilbert spaces may
be finite- or infinite-dimensional. If |1i, |2i, . . . is an ON basis for a Hilbert
space H, then any | i in H can be expanded in a generalized Fourier series:

| i =
X

k

c
k

|ki.
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The generalized Fourier coe�cients c
k

can be determined as follows:

hk |  i = hk|
X

j

c
j

|ji =
X

j

c
j

hk | ji = c
k

.

Therefore, c
k

= hk |  i. Hence,

| i =
X

k

c
k

|ki =
X

k

hk |  i |ki =
X

k

|kihk |  i.

This is just the vector’s representation in a particular basis. (Note that this
equation implies the identity matrix I =

P
k

|kihk|.)
A linear operator L : H ! Ĥ satisfies L(c|�i+ d| i) = cL(|�i)+ dL(| i)

for all |�i, | i 2 H and c, d 2 C.
A linear operator L : H ! Ĥ can be represented by a (possibly infinite-

dimensional) matrix relative to bases for H and Ĥ. To see this, suppose |1i,
|2i, . . . is a basis for H and |1̂i, |2̂i, . . . is a basis for Ĥ. Consider |�i = L| i
and represent the vectors in these bases by their Fourier coe�cients: b

j

= h|̂ |
�i and c

k

= hk |  i. Hence |�i is represented by the vector b = (b
1

, b
2

, . . .)T

and | i by the vector c = (c
1

, c
2

, . . .)T. Apply the linearity of L:

b
j

= h|̂ | �i
= h|̂ | L |  i

= h|̂|L
 
X

k

c
k

|ki
!

= h|̂|
 
X

k

c
k

L|ki
!

=
X

k

h|̂ | L | kic
k

.

Therefore, define the matrix M
jk

def

= h|̂ | L | ki and we see b = Mc. For
this reason, an expression of the form h|̂ | L | ki is sometimes called a matrix
element. Note that the matrix depends on the basis we choose.

A.2.d Outer product or dyad

We can form the product of a ket and a bra, which is called a dyad or outer
product. Consider first the finite dimensional case. If |�i is an m⇥ 1 column
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vector, and | i is an n⇥ 1 column vector (so that h | is a 1⇥n row vector),
then the outer product |�ih | is an m⇥ n matrix. In most cases of interest
m = n. More generally, we can form outer products of infinite-dimensional
vectors in Hilbert spaces. If |�i 2 H0 and | i 2 H, then |�ih | is the linear
operator L : H ! H0 defined, for any |�i 2 H:

L|�i = (|�ih |)|�i = |�i h | �i.

That is, |�ih | is the operator that returns |�i scaled by the inner product
of | i and its argument. To the extent that the inner product measures
the similarity of | i and |�i, the result |�i is weighted by this similarity.
The product |�ih | can be pronounced “�-ket bra- ” or “� ket-bra  ,” and
abbreviated |�ih |.

The special case |�ih�| is called a projector onto |�i. More generally,
if |⌘

1

i, . . . , |⌘
m

i are orthonormal, then
P

m

k=1

|⌘
k

ih⌘
k

| projects into the m-
dimensional subspace spanned by these vectors.

Any linear operator can be represented as a weighted sum of outer prod-
ucts. To see this, suppose L : H ! Ĥ, ||̂i is a basis for Ĥ, and |ki is a basis
for H. Suppose |�i = L| i. We know from Sec. A.2.c that

h|̂ | �i =
X

k

M
jk

c
k

, where M
jk

= h|̂ | L | ki, and c
k

= hk |  i.

Hence,

|�i =
X

j

||̂i h|̂ | �i

=
X

j

||̂i
 
X

k

M
jk

hk |  i
!

=

 
X

j

||̂i
X

k

M
jk

hk|
!
| i

=

 
X

jk

M
jk

||̂ihk|
!
| i.

Hence, we have a sum-of-outer-products representation of the operator:

L =
X

jk

M
jk

||̂ihk|, where M
jk

= h|̂ | L | ki.
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A.2.e Tensor products

Suppose that |⌘
j

i is an ON basis for H and |⌘0
k

i is an ON basis for H0.
For every pair of basis vectors, define the tensor product |⌘

j

i ⌦ |⌘0
k

i as a
sort of couple or pair of the two basis vectors; that is, there is a one-to-one
correspondence between the |⌘

j

i ⌦ |⌘0
k

i and the pairs in {|⌘
0

i, |⌘
1

i, . . .} ⇥
{|⌘0

0

i, |⌘0
1

i, . . .}. Define the tensor product space H⌦H0 as the space spanned
by all linear combinations of the basis vectors |⌘

j

i ⌦ |⌘0
k

i. Therefore each
element of H ⌦ H0 is represented by a unique sum

P
jk

c
jk

|⌘
j

i ⌦ |⌘0
k

i. The
tensor product is essential to much of the power of quantum computation.

If |�i = (u
1

, . . . , u
m

)T and | i = (v
1

, . . . , v
n

)T, then their tensor product
can be defined by the Kronecker product):

|�i ⌦ | i =

0

B@
u
1

| i
...

u
m

| i

1

CA

=
�
u
1

| iT, . . . , u
m

| iT
�
T

= (u
1

v
1

, . . . , u
1

v
n

, . . . , u
m

v
1

. . . , u
m

v
n

)T.

Note that this is an mn⇥ 1 column vector and that

(|�i ⌦ | i)
(j�1)n+k

= u
j

v
k

.

The following abbreviations are frequent: |� i = |�, i = |�i| i = |�i⌦ | i.
Note that |�i| i can only be a tensor product because it would not be a legal
matrix product. These are some useful properties of the tensor product:

(c|�i)⌦ | i = c(|�i ⌦ | i) = |�i ⌦ (c| i),
(|�i+ | i)⌦ |�i = (|�i|�i) + (| i|�i),
|�i ⌦ (| i+ |�i) = (|�i ⌦ | i) + (|�i ⌦ |�i).

The inner products of tensor products are given by

h�
1

�
2

|  
1

 
2

i = h�
1

⌦ �
2

|  
1

⌦  
2

i = h�
1

|  
1

i h�
2

|  
2

i.

The tensor product of linear operators is defined

(L⌦M) (|�i ⌦ | i) = L|�i ⌦M | i.
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Using the fact that | i =
P

jk

c
jk

|⌘
j

i ⌦ |⌘0
k

i you can compute (L ⌦ M)| i
for an arbitrary | i 2 H⌦H0 (exercise). If M is a k ⇥m matrix and N is a
l ⇥ n matrix, then their Kronecker product is a kl ⇥mn matrix:

M⌦N =

0

BBB@

M
11

N M
12

N · · · M
1m

N
M

21

N M
22

N · · · M
2m

N
...

...
. . .

...
M

k1

N M
k2

N · · · M
km

N

1

CCCA
.

For vectors, operators, and spaces, we pronounce M ⌦N as “M tensor N .”
For a vector, operator, or space M , we define the tensor power M⌦n to be
M tensored with itself n times:

M⌦n =

nz }| {
M ⌦M ⌦ · · ·⌦M .

A.2.f Properies of operators and matrices

Several properties of operators and matrices are important in quantum com-
putation. An operator L : H ! H is normal if L†L = LL†. The same
applies to square matrices. That is, normal operators commute with their
adjoints. For any normal operator on a finite-dimensional Hilbert space,
there is an ON basis that diagonalizes the operator, and conversely, any di-
agonalizable operator is normal. This is called a spectral decomposition of
the operator. The ON basis comprises the eigenvectors |0i, |1i, . . . , and
the corresponding eigenvalues �

k

are the diagonal elements (cf. Sec. A.2.d,
p. 39): L =

P
k

�
k

|kihk|. Therefore, a matrix is normal if and only if it
can be diagonalized by a unitary transform (see A.2.f, below). That is, it
is normal if and only if there is a unitary U such that L = U⇤U †, where
⇤ = diag(�

1

, . . .�
n

). If |0i, |1i, . . . is the basis, then U = (|0i, |1i, . . .) and

U † =

0

B@
h0|
h1|
...

1

CA .

(More generally, this property holds for compact normal operators.)
It is often convenient to extend various complex functions (e.g., ln, exp,

p
)

to normal matrices and operators. If f : C ! C and L : H ! H, then we
define:

f(L)
def

=
X

k

f(�
k

)|kihk|,
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where L =
P

k

�
k

|kihk| is a spectral decomposition of L. Therefore, for a
normal linear operator or matrix L we can write

p
L, lnL, eL, etc.

An operator L : H ! H is Hermitian or self-adjoint if L† = L. The
same applies to square matrices. (They are the complex analogues of sym-
metric matrices.) Hermitian operators are normal. It is easy to see that L
is Hermitian if and only if h� | L |  i = h | L | �i for all |�i, | i (since
h | L | �i = h� | L† |  i = h� | L |  i). A normal matrix is Hermitian if
and only if it has real eigenvalues (exercise). This is important in quantum
mechanics, since measurement results are usually assumed to be real.

An operator U is unitary if U †U = UU † = I. That is, a unitary operator is
invertible and its inverse is its adjoint. That is, if U is unitary, then U�1 = U †.
Obviously every unitary operator is also normal. A normal matrix is unitary
if and only if its spectrum is contained in the unit circle in the complex plane.
Unitary operators preserve inner products: h� | U †U |  i = h� |  i. That is,
the inner product of U |�i and U | i is the same as the inner product of |�i
and | i. Note that h� | U †U |  i = (U |�i)†U | i, the inner product. Unitary
operators are isometric, i.e., they preserve norms:

kU | ik2 = h | U †U |  i = h |  i = k| ik2.

Unitary operators are like rotations of a complex vector space (analogous to
orthogonal operators, which are rotations of a real vector space). Unitary
operators are important in quantum computation because the evolution of
quantum systems is unitary.


