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B.2 Wave-particle duality

Perform the double-slit experiment with three di↵erent kinds of objects.

B.2.a Classical Particles

¶1. Define Pj(x) is the probability of a particle arriving at x with just slit
j open.
Define P

12

(x) is the probability of a particle arriving at x with both
open.

¶2. We observe P
12

= P
1

+ P
2

, as expected.

B.2.b Classical Waves

¶1. The energy I of a water wave depends on the square of its height H,
which may be positive or negative.

¶2. Hence I
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.

¶3. The 2H
1

H
2

term may be positive or negative, which leads to construc-
tive and destructive interference.

B.2.c Quantum Particles

¶1. The probability of observing a particle is given by the rule for waves.

¶2. The probability P is given by the square of a complex amplitude A.

¶3. P
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= |A
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+ A
2

|2 = P
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+ A
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A
2

+ A
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A
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+ P
2

.

¶4. How does a particle going through one slit “know” whether or not the
other slit is open?
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B.3 Uncertainty principle

B.3.a Informally

¶1. Heisenberg Uncertainty Principle: The uncertainty principle states
a lower bound on the precision with which certain pairs of variables can
be measured.

¶2. Conjugate variables: These are such pairs as position and momen-
tum, and energy and time.

For example, the same state can be represented by the wave function
 (x) as a function of space and by �(p) as a function of momentum.

¶3. Example: �x �p � ~/2.

~ = h/2⇡, where h is Planck’s constant. They are defined E = h⌫
(Hertz, or cycles per second) and E = ~! (radians per second).

¶4. Observer e↵ect: “While it is true that measurements in quantum
mechanics cause disturbance to the system being measured, this is most
emphatically not the content of the uncertainty principle.”1

(The disturbance is called the observer e↵ect.)

¶5. Typically the uncertainty principle is a result of the variables repre-
senting measurements in two bases that are Fourier transforms of each
other.
For example, time and energy are conjugate; note  (t) and �(E) =
 (⌫), where E = h⌫. (For momentum, the de Broglie relation is
p� = h, where � = wavelength, or p = ~k, where k = 2⇡/� is the
angular wavenumber, the number of wavelengths per 2⇡ units of dis-
tance.)

¶6. Example: Consider an audio signal  (t) and its Fourier transform
 (⌫). Note that  is a function of time, with dimension t, and its
spectrum  is a function of frequency, with dimension t�1.
They are reciprocals of each other, and that is always the case with
Fourier transforms.

1NC 89.
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¶7. For more details on this, including an intuitive explanation, see FFC,
ch. 6.)

¶8. Non-commutative operators: More generally, the observables are
represented by Hermitian operators P,Q that do not commute. That is,
to the extent they do not compute, to that extent you cannot measure
them both (because you would have to do either PQ or QP , but they
do not give the same result).

¶9. Best interpretation: If you set up the experiment multiple times, and
measure the outcomes, you will find

2 �P �Q � |h[P,Q]i|,

where P and Q are conjugate observables.

¶10. Note that this is a purely mathematical result. Any system obeying
the QM postulates will have uncertainty principles for every pair of
non-commuting observables.

B.3.b Formally

Optional! The following is from FFC, ch. 5.

¶1. Definition B.1 (commutator) If L,M : H ! H are linear opera-
tors, then their commutator is defined:

[L,M ] = LM � ML. (III.2)

Remark B.1 In e↵ect, [L,M ] distills out the non-commutative part of
the product of L and M . If the operators commute, then [L,M ] = 0, the
identically zero operator. Constant-valued operators always commute
(cL = Lc), and so [c, L] = 0.

¶2. Definition B.2 (anti-commutator) If L,M : H ! H are linear
operators, then their anti-commutator is defined:

{L,M} = LM +ML. (III.3)

If {L,M} = 0, we say that L and M anti-commute, LM = �ML.
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¶3. See B.1.c (p. 93) for the justification of the following definitions.

Definition B.3 (mean of measurement) If M is a Hermitian op-
erator representing an observable, then the mean value of the measure-
ment of a state | i is

hMi = h | M |  i.

¶4. Definition B.4 (variance and standard deviation of measurement)
If M is a Hermitian operator representing an observable, then the vari-
ance in the measurement of a state | i is

Var{M} = h(M � hMi2)i = hM2i � hMi2.

As usual, the standard deviation �M of the measurement is defined

�M =
p

Var{M}.

¶5. Proposition B.1 If L and M are Hermitian operators on H and | i 2
H, then

4h | L2 |  i h | M2 |  i � |h | [L,M ] |  i|2 + |h | {L,M} |  i|2.

More briefly, in terms of average measurements,

4hL2ihM2i � |h[L,M ]i|2 + |h{L,M}i|2.

Proof: Let x+ iy = h | LM |  i. Then,

2x = h | LM |  i + (h | LM |  i)⇤

= h | LM |  i + h | M †L† |  i
= h | LM |  i + h | ML |  i since L,M are Hermitian

= h | {L,M} |  i.

Likewise,

2iy = h | LM |  i � (h | LM |  i)⇤

= h | LM |  i � h | ML |  i
= h | [L,M ] |  i.
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Hence,

|h | LM |  i|2 = 4(x2 + y2)

= |h | [L,M ] |  i|2 + |h | {L,M} |  i|2.

Let |�i = L| i and |µi = M | i. By the Cauchy-Schwarz inequality,
k|�ik k|µik � |h� | µi| and so h� | �i hµ | µi � |h� | µi|2. Hence,

h | L2 |  i h | M2 |  i � |h | LM |  i|2.

The result follows.

⇤

¶6. Proposition B.2 Prop. B.1 can be weakened into a more useful form:

4h | L2 |  i h | M2 |  i � |h | [L,M ] |  i|2,

or 4hL2ihM2i � |h[L,M ]i|2

¶7. Proposition B.3 (uncertainty principle) If Hermitian operators P
and Q are measurements (observables), then

�P �Q � 1

2
|h | [P,Q] |  i|.

That is, �P �Q � |h[P,Q]i|/2. So the product of the variances is
bounded below by the degree to which the operators do not commute.

Proof: Let L = P � hP i and M = Q � hQi. By Prop. B.2 we have

4Var{P}Var{Q} = 4hL2ihM2i
� |h[L,M ]i|2

= | h[P � hP i, Q � hQi]i |2

= |h[P,Q]i|2.

Hence,
2 �P�Q � |h[P,Q]i|

⇤
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B.4 Dynamics

B.4.a Continuous time

¶1. Schrödinger equation: The time evolution of a closed QM system is
given by the Schrödinger equation:

i~ d

dt
| (t)i = H| (t)i,

or more compactly, i~| ̇i = H| i.
H is the Hamiltonian of the system (a fixed Hermitian operator).
~ is Planck’s constant (often absorbed into H).

¶2. SinceH is Hermitian, it has a spectral decomposition,H =
P

E E|EihE|,
where the normalized |Ei are energy eigenstates (or stationary states)
with corresponding energies E.
The lowest energy is the ground state energy.

B.4.b Discrete time

¶1. Stone’s theorem shows that the solution to the Schrödinger equation
is:

| (t+ s)i = e�iHt/~| (s)i.

¶2. Define U(t)
def

= exp(�iHt/~); then | (t+ s)i = U(t)| (s)i.

¶3. U is unitary (Exer. III.3).

¶4. Hence the evolution of a closed QM system from a state | i at time
t to a state | 0i at time t0 can be described by a unitary operator,
| 0i = U | i.

¶5. For any unitary operator U there is a Hermitian K such that U =
exp(iK) (Exer. III.4).


