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B.5 Superposition

B.5.a Bases

¶1. In QM certain physical quantities are quantized, such as the energy of
an electron in an atom.
Therefore an atom might be in certain distinct energy states |groundi,
|first excitedi, |second excitedi, . . .

¶2. Other particles might have distinct states such as spin-up | "i and
spin-down | #i.

¶3. In each case these alternative states are orthonormal: h"|#i = 0;
hground | first excitedi = 0, hground | second excitedi = 0, hfirst excited |
second excitedi = 0.

¶4. In general we may express the same state with respect to di↵erent bases,
such as vertical or horizontal polarization | !i, | "i; or orthogonal
diagonal polarizations | %i, | &i.

B.5.b Superpositions of Basis States

¶1. One of the unique characteristics of QM is that a physical system can
be in a superposition of basis states, for example,

| i = c
0

|groundi + c
1

|first excitedi + c
2

|second excitedi,

where the cj are complex numbers, called (probability) amplitudes.

¶2. Since k| ik = 1, we know |c
0

|2 + |c
1

|2 + |c
2

|2 = 1.

¶3. With respect to a given basis, a state | i is interchangeable with its vec-
tor of coe�cients, c = (c

0

, c
1

, . . . , cn)T. When the basis is understood,
we can use | i as a name for this vector.

¶4. Quantum parallelism: The ability of a quantum system to be in
many states simultaneously is the foundation of quantum parallelism.

¶5. Measurement: As we will see, when we measure the quantum state

c
0

|E
0

i + c
1

|E
1

i + . . .+ cn|Eni

with respect to the |E
0

i, . . . , |Eni basis, we will get the result |Eji with
probability |cj|2 and the state will “collapse” into state |Eji.
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Finally, after filterB is inserted betweenA andC, a small amount of light will be visible
on the screen, exactly one eighth of the original amount of light.

A B C

Here we have a nonintuitive effect. Classical experience suggests that adding a filter should
only be able to decrease the number of photons getting through. How can it increase it?

2.1.2 The Explanation. A photon’s polarization state can be modelled by a unit vector
pointing in the appropriate direction. Any arbitrary polarization can be expressed as a
linear combination a|"i+b|!i of the two basis vectors2 |!i (horizontal polarization) and
|"i (vertical polarization).
Since we are only interested in the direction of the polarization (the notion of “magni-

tude” is not meaningful), the state vector will be a unit vector, i.e., |a|2 + |b|2 = 1. In
general, the polarization of a photon can be expressed as a|"i + b|!i where a and b are
complex numbers3 such that |a|2 + |b|2 = 1. Note, the choice of basis for this representa-
tion is completely arbitrary: any two orthogonal unit vectors will do (e.g. {|�i, |%i}).
The measurement postulate of quantum mechanics states that any device measuring a 2-

dimensional system has an associated orthonormal basis with respect to which the quantum
measurement takes place. Measurement of a state transforms the state into one of the
measuring device’s associated basis vectors. The probability that the state is measured as
basis vector |ui is the square of the norm of the amplitude of the component of the original
state in the direction of the basis vector |ui. For example, given a device for measuring
the polarization of photons with associated basis {|"i, |toi}, the state � = a|"i + b|!i is
measured as |"i with probability |a|2 and as |!i with probability |b|2 (see Figure 1). Note
that different measuring devices with have different associated basis, and measurements
using these devices will have different outcomes. As measurements are always made with
respect to an orthonormal basis, throughout the rest of this paper all bases will be assumed
to be orthonormal.
Furthermore, measurement of the quantum state will change the state to the result of the

measurement. That is, if measurement of � = a|"i + b|!i results in |"i, then the state
� changes to |"i and a second measurement with respect to the same basis will return |"i
with probability 1. Thus, unless the original state happened to be one of the basis vectors,
measurement will change that state, and it is not possible to determine what the original
state was.

2The notation |!� is explained in section 2.2.
3Imaginary coefficients correspond to circular polarization.

Figure III.4: Fig. from IQC.

¶6. Qubit: For the purposes of quantum computation, we usually pick two
basis states and use them to represent the bits 1 and 0, for example,
|1i = |groundi and |0i = |excitedi.
I’ve picked the opposite of the “obvious” assignment (|0i = |groundi)
just to show that the assignment is arbitrary (just as for classical bits).

¶7. Note that |0i 6= 0, the zero element of the vector space, since k|0ik = 1
but k0k = 0. (Thus 0 does not represent a physical state.)

B.5.c Photon polarization experiment

See Fig. III.4.

¶1. Experiment: Suppose we have three polarizing filters, A, B, and C,
polarized horizontally, 45�, and vertically, respectively.

¶2. Place filter A between strong light source and screen. Intensity is re-
duced by half and light is horizontally polarized.
(Note: intensity would be much less if it allowed only horizontally po-
larized light through, as in sieve model.)

¶3. Insert filter C and intensity drops to zero. No surprise, since cross-
polarized.

¶4. Insert filter B between A and C, and some light (about 1/8 intensity)
will return!
Can’t be explained by sieve model.

¶5. Explanation: A photon’s polarization state can be represented by a
unit vector pointing in appropriate direction.



B. BASIC CONCEPTS FROM QUANTUM THEORY 105

���

���

��������	

�������
��	

Figure III.5: Alternative polarization bases for measuring photons (black =
rectilinear basis, red = diagonal basis). Note | %i = 1p

2

(| "i + | !i) and

| !i = 1p
2

(| %i + | &i).

¶6. Arbitrary polarization can be expressed by a|0i+b|1i for any two basis
vectors |0i, |1i, where |a|2 + |b|2 = 1.

¶7. A polarizing filter measures a state with respect to a basis that includes
a vector parallel to polarization and one orthogonal to it.

¶8. The filter A is the projector | !ih! |.
To get the probability amplitude, apply to | i def

= a| !i + b| "i:

h!|  i = h! |(a| !i + b| "i) = ah!|!i + bh!|"i = a.

So with probability |a|2 we get | !i. Recall (Eqn. III.1, p. 93):

p(| !i) = kh!|  ik2 = |a|2.

¶9. So if the polarizations are randomly distributed from the source, half
will get through with resulting photons all | !i.
Why 1/2? Note a = cos ✓ and ha2i = 1

2⇡

R
2⇡

0

cos2 ✓ d✓ = 1

2

.
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¶10. When we insert filter C we are measuring with h" | and the result is 0,
as expected.

¶11. Diagonal filter: Filter B measures with respect to the {| %i, | &i}
basis. See Fig. III.5.

¶12. To find the result of applying filter B to the horizontally polarized light,
we must express | !i in the diagonal basis:

| !i = 1p
2
(| %i + | &i).

¶13. So if filter B = h% | we get | %i with probability 1/2.

¶14. The e↵ect of filter C, then, is to measure | %i by projecting against
h" |. Note

| %i = 1p
2
(| "i + | !i).

¶15. Therefore we get | "i with another 1/2 decrease in intensity (so 1/8
overall).
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B.6 No-cloning theorem

¶1. The No-cloning Theorem states that it is impossible to copy the state
of a qubit.

¶2. On the contrary, assume that we have a unitary transformation U that
does the copying, so that U(| i ⌦ |ci) = | i ⌦ | i, where |ci is an
arbitrary constant qubit.
That is U | ci = |  i.

¶3. Suppose | i = a|0i + b|1i.

¶4. By the linearity of U :

U | i|ci = U (a|0i + b|1i)|ci
= U(a|0i|ci + b|1i|ci) distrib. of tensor prod.

= U(a|0ci + b|1ci)
= a(U |0ci) + b(U |1ci) linearity

= a|00i + b|11i copying property.

¶5. By expanding |  i we have:

U | ci = |  i
= (a|0i + b|1i) ⌦ (a|0i + b|1i)
= a2|00i + ba|10i + ab|01i + b2|11i.

¶6. Note that these two expansions cannot be made equal in general, so no
such unitary transformation exists.

¶7. Cloning is possible in the special cases a = 0, b = 1 or a = 1, b = 0,
that is, where we know that we a cloning a pure basis state.
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B.7 Entanglement

B.7.a Entangled and decomposable states

¶1. Suppose that H0 and H00 are the state spaces of two systems. Then
H = H0 ⌦ H00 is the state space of the composite system.

¶2. For simplicity, suppose that both spaces have the basis {|0i, |1i}. Then
H0 ⌦ H00 has basis {|00i, |01i, |10i, |11i}.
Recall that |01i = |0i ⌦ |1i, etc.

¶3. Arbitrary elements of H0 ⌦ H00 can be written in the formX
j,k=0,1

cjk|jki =
X

j,k=0,1

cjk |j0i ⌦ |k00i.

¶4. Sometimes the state of the composite systems can be written as the
tensor product of the states of the subsystems, | i = | 0i ⌦ | 00i. Such
a state is called a separable, decomposable or product state.

¶5. In other cases the state cannot be decomposed, in which case it is called
an entangled state

¶6. Bell entangled state: For an example of an entangled state, consider
the Bell state �+, which might arise from a process that produced two
particles with opposite spin (but without determining which is which):

�
01

def

=
1p
2
(|01i + |10i) def

= �+. (III.4)

(The notations �
01

and �+ are both used.)
Note that the states |01i and |10i both have probability 1/2.

¶7. Such a state might arise from a process that emits two particles with
opposite spin angular momentum in order to preserve conservation of
spin angular momentum.

¶8. To show that it’s entangled, we need to show that it cannot be de-
composed, that is, that we cannot write �

01

= | 0i ⌦ | 00i, where
| 0i = a

0

|0i + a
1

|1i and | 00i = b
0

|0i + b
1

|1i.

�
01

?

= (a
0

|0i + a
1

|1i) ⌦ (b
0

|0i + b
1

|1i).
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Multiplying out the RHS yields:

a
0

b
0

|00i + a
0

b
1

|01i + a
1

b
0

|10i + a
1

b
1

|11i.

Therefore we must have a
0

b
0

= 0 and a
1

b
1

= 0. But this implies that
either a

0

b
1

= 0 or a
1

b
0

= 0 (as opposed to 1/
p
2), so the decomposition

is impossible.

¶9. Decomposable state: Consider: 1

2

(|00i+ |01i+ |10i+ |11i). Writing
out the product (a

0

|0i + a
1

|1i) ⌦ (b
0

|0i + b
1

|1i) as before, we require
a

0

b
0

= a
0

b
1

= a
1

b
0

= a
1

b
1

= 1

2

. This is satisfied by a
0

= a
1

= b
0

= b
1

=
1p
2

.

¶10. Bell states: In addition to Eq. III.4, the other three Bell states are
defined:

�
00

def

=
1p
2
(|00i + |11i) def

=  +, (III.5)

�
10

def

=
1p
2
(|00i � |11i) def

=  �, (III.6)

�
11

def

=
1p
2
(|01i � |10i) def

= ��. (III.7)

¶11. The  states have two identical qubits, the � states have opposite.
The + superscript indicates they are added, the � that they are sub-
tracted.

¶12. The general definition is:

�xy =
1p
2
(|0, yi + (�1)x|1,¬yi).
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B.7.b EPR paradox

¶1. Proposed by Einstein, Podolsky, and Rosen in 1935 to show problems
in QM.

¶2. Suppose a source produces an entangled EPR pair (or Bell state)  + =
�

00

= 1p
2

(|00i + |11i), and the particles are sent to Alice and Bob.

¶3. If Alice measures her particle and gets |0i, then that collapses the state
to |00i, and so Bob will have to get |0i if he measures. And likewise if
Alice happens to get |1i.

¶4. This happens instantaneously (but it does not permit faster-than-light
communication).

¶5. Hidden-variable theories: One explanation is that there is some
internal state in the particles that will determine the result of the mea-
surement. Both particles have the same internal state.
This cannot explain the results of measurements in di↵erent bases.
In 1964 John Bell showed that any local hidden variable theory would
lead to measurements satisfying a certain inequality (Bell’s inequality).
Actual experiments violate Bell’s inequality.
It has been verified over tens of kilometers.
Thus local hidden variable theories cannot be correct.

¶6. Causal theories: Another explanation is that Alice’s measurement
a↵ects Bob’s (or vice versa, if Bob measures first).
According to relativity theory, in some frames of reference Alice’s mea-
surement comes first, and in others, Bob’s.
Therefore there is no consistent cause-e↵ect relation.
This is why Alice and Bob cannot use entangled pairs to communicate.


