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Figure I11.9: Left: classical gates. Right: controlled-NoT gate. [Fig. 1.6
from NC]

C.2 Quantum gates

q1.

Quantum gates are analogous to ordinary logic gates (fundamental
building blocks of circuits), but they must be unitary transformations.

(See Fig. I11.9, left.)
Fortunately, Bennett, Fredkin, and Toffoli have already shown how all
the usual logic operations can be done reversibly.

C.2.a SINGLE-QUBIT GATES

qL.

Q.

qs.

NOT: The NOT gate is simple because it is reversible: NOT|0) = |1),
NOTI|1) = |0).

Its desired behavior can be represented:

NOT: [|0) = |1)
1) — 0).

Note that defining it on a basis defines it on all quantum states.

Therefore it can be represented

NOT = [1)(0] + [0)(1].
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You can read this “return |1) if the input is |0), and return |0) if the
input is |1).”

In the standard basis:

NOT:(?)(10)+($>(01):(? é)

The first column represents the result for |0), which is |1), and the
second represents the result for |1), which is |0).

Superposition: Although NOT is defined in terms of the computa-
tional basis vectors, it applies to any qubit:

NOT(a|0) + b|1)) = aNOT]|0) + bBNOT|1) = a|1) + b|0) = b|0) + a|1).

Pauli matrices: In QM, the NOT transformation is usually called X.
It is one of four useful unitary operations, called the Pauli matrices,
which are worth remembering. In the standard basis:

e (S} 1 0
[, & (0 1) (I11.10)
xdef, wf gt (01 (I11.11)
10
def def def 0 =
Y=0,=0, = . (IT1.12)
—1 0
g, d, (é _01> (111.13)

We have seen that X is NOT, and I is obviously the identity gate. Z
leaves |0) unchanged and maps |1) to —|1).

Phase-flip operator: 7 is called the phase-flip operator because it
flips the phase of the |1) component by 7 relative to the |0) component.
(Recall that global/absolute phase doesn’t matter.)

The Pauli matrices span the space of 2 x 2 complex self-adjoint unitary
matrices (exercise).
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q11.
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q13.
q14.
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Note that Z|+) = |—) and Z|—) = |+). It is thus the analog in the
sign basis of X (NOT) in the computational basis.

What is the effect of Y on the computational basis vectors? (Exer.
I11.9)

Alternative definition of Y: Note that there is an alternative defi-
nition of Y that differs only in global phase:

def 0 1
Y—(_1 0).

This is a 90° = /2 counterclockwise rotation:

Y (al0) + b|1)) = b|0) — a|1).
Note that these operations apply to any state, not just basis states.

The X, Y, and Z operators get their names from the fact that they
reflect state vectors along the x, y, z axes of the Bloch-sphere represen-
tation of a qubit, which I hope to skip.

Since they are reflections, they are Hermitian (their own inverses).

C.2.b MULTIPLE-QUBIT GATES

qL.

Q.

9.

We know that any logic circuit can be built up from NAND gates. Can
we do the same for quantum logic? We can’t use NAND, because it’s
not reversible.

Controlled-NOT: The controlled-NOT or CNOT gate has two inputs:
the first determines what it does to the second (negate it or not).

CNOT:  [00) + |00)
01) — |01)
110) — |11)
1) — [10).

Control and target: Its first argument is called the control and its
second is called the target or data bit.
This is a simple example of conditional quantum computation.
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CNOT can be translated into a sum-of-outer-products or sum-of-dyads

representation (Sec. A.2.j), which can be written in matrix form (Ex.
IIL.16, p. 226).

CNOT = [00%00|
+ |o1)01]
+ [11Y10]
+ [10¥11]

We can also define it (for z,y € 2), CNOT|zy) = |zz), where z = x Dy,
the exclusive OR of x and y. That is CNOT|z,y) = |z,2 @ y)

CNOT is the only non-trivial 2-qubit reversible logic gate.

Note CNOT is unitary since obviously CNOT = CNOT' (using the
outer-product representation or its matrix representation, Ex. III1.16,
p. 226). See Fig. I11.9 (right) for the matrix.

Note the diagram for CNOT in Fig. II1.9 (right).

CNOT can be used to produce an entangled state:

1 1
CNOT (|00} + [10)) = =

FAN-OUT: Note that CNOT|z,0) = |z, ), i.e., FAN-OUT, which
would seem to violate the No-cloning Theorem, but it works as expected

only for x € 2.
Note that in general CNOT|)|0) # [¢)[¢) (Exer. II1.17).

(100) + [11)) = Boo-

Toffoli or CCNOT gate: Another useful gate is the three-input/output
Toffoli or controlled-controlled-NOT. It negates the third qubit iff the
first two qubits are both 1. For x,y, 2z € 2,

CONOT|1,1,2) ¥ |1,1,-2),
CCNOT|z,y, z) o |z,y,2), otherwise.

All the Booleans operations can be implemented (reversibly!) by using
Toffoli gates (Exer. I11.19).
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Figure II1.10: Diagram for CCNOT or Toffoli gate [fig. from NC]. Sometimes
the x is replaced by @ because CCNOT |zyz) = |z, y, 2y @ 2).

913. For example, CCNOT|z,y,0) = |x,y,x A y).

€14. Quantum implementation: In Jan. 2009 CCNOT was successfully
implemented using trapped ions.?

C.2.c WALSH-HADAMARD TRANSFORMATION

1. Hadamard transformation: The Hadamard transformation or gate
is defined:

HI0) < |4, (I11.14)
H1l) = |-). (IT1.15)
2. In sum-of-dyads form: H % |+X0| + |—X1].

€3. In matrix form (standard basis):

e ].
Hgﬁ<1i>. (I11.16)

94. Applied to a |0), H generates an (equally-weighted) superposition of
the two bit values. H|0) = \/L§|0> + %|1> This is a useful way of
generating superposition of possible inputs (described shortly).

3Monz, T.; Kim, K.; Hansel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum Toffoli Gate with Trapped
Tons.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.
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H? = (since H' = H).

Rotation of basis: The H transform can be used to rotate the com-
putational basis into the sign basis and back (Exer. I11.24):

H(al0) +b[1)) = al+)+b]-),
H(al+) +b|-)) = al0)+ b|1).
Alice and Bob could use this in QKD.
H = (X+Z)/v2 (Exer. 111.25).

Walsh(-Hadamard) transform: The Walsh transform, a tensor power
of H, can be applied to a quantum register to generate a superposition
of all possible register values.

Counsider the n = 2 case:

H®1), ¢) = (H® H)(|¢) @|0))
(HJy)) ® (H|¢))

In particular,
H®100) = (H]0)) ® (H]0))
=

— |50+ |1>>}®2

1 2
_ (ﬁ) (10) + [1))([0) + [1))

1
= ﬁ(|00)+|01)+|10>+|11>).
Notice that this is a superposition of all possible values of the 2-bit
register.

In general,

Ho )" = ¢12_ni|o>+|1>>®<|0>+|T>>®---®<|o>+|1>5
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= (o) + )

1
= \/Q_HZ|X>

xe2n

ﬂ

2" —1

1
= \/2_nZ|X)

=0

Note that “2" — 17 represents a string of n 1-bits, and 2 = {0, 1}.

912. Hence, H®™|0)®" generates a superposition of all 2" possible values of
the n-qubit register.

913. W: We often write W,, = H®™ for the Walsh transformation.

€14. quantum parallelism: An operation applied to such a superposition
state in effect applies the operation simultaneously to all 2" possible
values. This is exponential quantum parallelism.

€15. This suggests that QC might be able to solve exponential problems
much more efficiently than classical computers.



