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D.2 Simon

Simon’s algorithm was first presented in 1994 and can be found in Simon, D.
(1997), “On the power of quantum computation,” SIAM Journ. Computing,
26 (5), pp. 1474–83. The following presentation follows Mermin’s Quantum
Computer Science (Mermin, 2007, §2.5, pp. 55–8).
¶1. For breaking RSA we will see that its useful to know the period of a

function: that r such that f(x + r) = f(x). Simon’s problem is a
warmup for this.

¶2. Simon’s Problem: Suppose we are given an unknown function f :
2n ! 2n and we are told that it is two-to-one.
This means f(x) = f(y) i↵ x � y = r for some fixed r 2 2n.
The vector r can be considered the period of f , since f(x � r) = f(x).

¶3. The problem is to determine the period r of an unknown f .

¶4. Classical solution: Since we don’t know anything about f , the best
we can do is evaluate it on random inputs.
If we are ever lucky enough to find x and x0 such that f(x) = f(x0),
then we have our answer, r = x � x0.

¶5. On the average you need to do 2n/2 function evaluations, which is ex-
ponential in the size of the input.
For n = 100, it would require about 250 ⇡ 1015 evaluations. “At 10
million calls per second it would take about three years.” [MQCS 55]

¶6. Quantum algorithm: We will see that a quantum computer can
determine r with high probability (> 1�10�6) in about 120 evaluations.
At 10 million calls per second, this would take about 12 microseconds!

¶7. Input superposition: As before, start by using the Walsh-Hadamard
transform to create a superposition of all possible inputs:
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¶8. Function evaluation: Suppose that Uf is the quantum gate array
implementing f and recall Uf |xi|yi = |xi|y � f(x)i. Therefore:
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Therefore we have an equal superposition of corresponding input-output
values.

¶9. Output measurement: Measure the output register (in the compu-
tational basis) to obtain some |zi.
Since the function is two-to-one, the projection will have a superposi-
tion of two inputs:
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¶10. The information we need is contained in the input register,
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but it cannot be extracted directly.
If we measure it, we will get either x

0

or x
0

� r, but not both, and we
need both to get r.
(We cannot make two copies, due to the no-cloning theorem.)

¶11. Suppose we apply the Walsh-Hadamard transform to this superposi-
tion:
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¶12. Now, recall (¶13, p. 146) that H⌦n|xi = 1
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¶13. Note that (�1)(x0+r)·y = (�1)x0·y(�1)r·y.
Therefore, if r · y = 1, then the bracketed expression is 0 (since the
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terms have opposite sign and cancel).
However, if r · y = 0, then the bracketed expression is 2(�1)x0·y (since
they don’t cancel).

¶14. Hence the result of the Walsh-Hadamard transform is
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¶15. Measurement: Measuring the input register (in the computational
basis) will collapse it with equal probability into a state |y(1)i such
that r · y(1) = 0.

¶16. First equation: Since we know y(1), this gives us some information
about r, expressed in the equation:
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¶17. Iteration: The quantum computation can be repeated, producing a
series of bit strings y(1),y(2), . . . such that y(k) · r = 0.
From them we can build up a system of n linearly-independent equa-
tions and solve for r.
(If you get a linearly-dependent equation, you have to try again.)

¶18. Note that each quantum step (involving one evaluation of f) produces
an equation (except in the unlikely case y(k) = 0 or that it’s linearly
dep.), and therefore determines one of the bits in terms of the other
bits.
That is, each iteration reduced the candidates for r by approximately
one-half.

¶19. Probability: A mathematical analysis (Mermin, 2007, App. G) shows
that with n+m iterations the probability of having enough information
to determine r is > 1 � 1

2

m+1 .
“Thus the odds are more than a million to one that with n+20 invoca-
tions of Uf we will learn [r], no matter how large n may be.” (Mermin,
2007, p. 57)

¶20. Exponential speedup: Therefore Simon’s problem can be solved in
linear time on a quantum computer, but requires exponential time on
a classical computer.


