
F. UNIVERSAL QUANTUM COMPUTERS 187

F Universal quantum computers

¶1. Power: A natural question is: What is the power of a quantum com-
puter?
Is it super-Turing or sub-Turing?

¶2. E�ciency: Another question is: What is its e�ciency?
Can it solve NP problems e�ciently?

¶3. Models: There are a number of universal QC models for both theo-
retical and practical purposes.

F.1 Feynman on quantum computation

F.1.a Simulating quantum systems

This section is based primarily on F82.

¶1. In 1982 Richard Feynman discussed what would be required to simulate
a quantum mechanical system on a digital computer.

¶2. Probabilistic classical system: First he considered a classical prob-
abilistic physical system.
Suppose we want to use a conventional computer to calculate the prob-
abilities as the system evolves in time.

¶3. Suppose the system comprises R particles that are confined to N loca-
tions in space.
Each configuration c has a probability p(c).
There are NR possible configurations, since a configuration assigns a
location N to each of the R particles (i.e., the number of functions
R ! N).

¶4. Therefore to simulate all the possibilities would require keeping track
of a number of quantities (the probabilities) that grows exponentially
with the size of the system.
This is infeasible.

¶5. So let’s take a weaker goal: we want a simulator that exhibits the same
probabilistic behavior as the system.

188 CHAPTER III. QUANTUM COMPUTATION

So if we run both of them over and over, we will see the same distribu-
tion of behaviors.
This we can do.

¶6. You can implement this by having a nondeterministic computer that
has the same state transition probabilities as the primary system.

¶7. Quantum system: Let’s try the same trick with quantum systems,
i.e., have a conventional computer that exhibits the same probabilities
as the quantum system.

¶8. If you do the math (which we won’t), it turns out that this is impossible.
The reason is that, in e↵ect, some of the state transitions would have
to have what amount to negative probabilities, and we don’t know how
to do this classically.
We’ve seen how in QM, probabilities can in e↵ect cancel by destructive
interference of the wavefunctions.

¶9. The conclusion is that no conventional computer can e�ciently simulate
a quantum computer.

¶10. Therefore, if we want to (e�ciently) simulate any physical system, we
need a quantum computer.

F.1.b Universal quantum computer

This section is based primarily on F85.

¶1. In 1985 Feynman described several possible designs for a universal
quantum computer.

¶2. He observes that NOT, CNOT, and CCNOT are su�cient for any logic
gate, as well as for COPY and EXCHANGE, and therefore for universal
computation.

¶3. Adder: He exhibits circuits for a simple adder (Fig. III.38) and a full
adder (Fig. III.39).

¶4. Hamiltonian: The goal is to construct a Hamiltonian to govern the
operation of a quantum computer.

F. UNIVERSAL QUANTUM COMPUTERS 189

510 Feynman

(a) NOT

O
I

(b) CONTROLLED NOT
o

b, b'

o o / o o
o 1 / o l
I O / l l
~ / ~ o

0, o 13
FAN OUT .I.

o ~[13

a ~ G'
EXCHANGE b J(~ ~(b'

(c) CONTROLLED CONTROLLED NOT

b' See Table I.
c ~

Fig. 3. Reversible primitives.

Next is what we shall call the C O N T R O L L E D N O T (see Fig. 3b).
There are two entering lines, a and b, and two exiting lines, a ' and b'. The
a ' is always the same as a, which is the control line. If the control is
activated a -= 1 then the out b' is the N O T of b. Otherwise b is unchanged,
b ' = b . The table of values for input and output is given in Fig. 3. The
action is reversed by simply repeating it.

The quantity b' is really a symmetric function of a and b called XOR,
the exclusive or; a or b but not both. I t is likewise the sum modulo 2 of a
and b, and can be used to compare a and b, giving a 1 as a signal that they
are different. Please notice that this function XOR is itself not reversible.
For example, if the value is zero we cannot tell whether it came from
(a, b) = (0, 0) or from (1, 1) but we keep the other line a ' = a to resolve the
ambiguity.

We will represent the C O N T R O L L E D N O T by putting a 0 on the
control wire, connected with a vertical line to an X on the wire which is
controlled.

This element can also supply us with FAN OUT, for if b = 0 we see
that a is copied onto line b'. This COPY function will be important later
on. It also supplies us with E X C H A N G E , for three of them used

a o

b ,,, SUM

o ^ C A R R Y

Fig. 4. Adder.
Figure III.38: Simple adder using reversible logic. [fig. from F85]
Quantum Mechanical Computers 511

0

b
C

d=o '

A

C1

S I

~ C I (3 = 0 I
s'- - - l - - - b b'

SUM c'
CARRY = d'

Fig. 5. Full adder.

successively on a pair of lines, but with alternate choice for control line,
accomplishes an exchange of the information on the lines (Fig. 3b).

It turns out that combinations of just these two elements alone
are insufficient to accomplish arbitrary logical functions. Some element
involving three lines is necessary. We have chosen what we can call the
C O N T R O L L E D C O N T R O L L E D NOT. Here (see Fig. 3c) we have two
control lines a, b, which appear unchanged in the output and which change
the third line c to NOT c only if both lines are activated (a = 1 and b = 1).
Otherwise c ' = c. If the third line input c is set to 0, then evidently it
becomes 1 (c' = 1) only if both a and b are 1 and therefore supplies us with
the AND function (see Table I).

Three combinations for (a, b), namely (0, 0), (0, 1), and (1, 0), all give
the same value, 0, to the AND (a, b) function so the ambiguity requires
two bits to resolve it. These are kept in the lines a, b in the output so the
function can be reversed (by itself, in fact). The AND function is the carry
bit for the sum of a and b.

From these elements it is known that any logical circuit can be put
together by using them in combination, and in fact, computer science

Table I.

a b c o ' b ' ¢'

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 l
1 1 0 1 1 1
1 1 1 1 1 0

Figure III.39: Full adder using reversible logic. [fig. from F85]

¶5. Primitive operations: F describes quantum logic gates in terms of
two primitive operations, which change the state of an “atom” (two-
state system or “wire”).

¶6. Letters near the beginning of the alphabet (a, b, c, . . .) are used for data
or register atoms, and those toward the end (p, q, r, . . .) for program
atoms (which are used for sequencing operations).
In this simple sequential computer, only one program atom is set at a
time.

¶7. Annihilation operator: For a single line a, the annihilation operator
is defined:

a =

✓
0 1
0 0

◆
= |0ih1|.

The annihilator changes the state |1i to |0i. Applied to |0i, it leaves
the state unchanged and returns the zero vector 0 (which is not a
meaningful quantum state).
It matches |1i and resets it to |0i.
It’s not unitary (because not norm preserving).
This is a “partial NOT” operation.

190 CHAPTER III. QUANTUM COMPUTATION

¶8. Creation operation: Its conjugate it the creation operation

a⇤ =
✓

0 0
1 0

◆
= |1ih0|.

The creator transforms |0i to |1i, but leaves |1i alone, returning 0.
It matches |0i and resets it to |1i.
Note that a⇤ is the adjoint (conjugate transpose) of a.
This is the other half of NOT.

¶9. Number operation or 1-test: Consider11

Na = a⇤a =

✓
0 0
0 1

◆
= |1ih1|.

This has the e↵ect of returning |1i for input |1i, but 0 for |0i:

Na = a⇤a = |1ih0| |0ih1| = |1ih0 | 0ih1| = |1ih1|.

Thus it’s a test for |1i.
(This is a partial identity operation.)

¶10. 0-test: Similarly,12

1 � Na = aa⇤ =
✓

1 0
0 0

◆
= |0ih0|.

(Feynman writes this 1 � Na because he writes 1 = I.)
This has the e↵ect of returning |0i for input |0i, but 0 for |1i.
This is test for |0i.
(This is the rest of the identity operation.)

¶11. Universality: The two operations a and a⇤ are su�cient for creating
all 2 ⇥ 2 matrices, and therefore all transformations on a single qubit.
Note that ✓

w x
y z

◆
= waa⇤ + xa+ ya⇤ + za⇤a.

11This matrix is not the same as that given in F82 and F85, since Feynman uses the
basis |1i = (1, 0)T, |0i = (0, 1)T.

12This matrix is di↵erent from that given in F82 and F85, as explained in the previous
footnote.

F. UNIVERSAL QUANTUM COMPUTERS 191

522 Feynman

There is no loss associated with the uncertainty of cursor energy; at
least no loss depending on the number of calculational steps. Of course, if
you want to do a ballistic calculation on a perfect machine, some energy
would have to be put into the original wave, but that energy, of course, can
be removed from the final wave when it comes out of the tail of the
program line. All questions associated with the uncertainty of operators
and the irreversibility of measurements are associated with the input and
output functions.

No further limitations are generated by the quantum nature of the
computer per se, nothing that is proportional to the number of com-
putational steps.

In a machine such as this, there are very many other problems, due to
imperfections. For example, in the registers for holding the data, there will
be problems of cross-talk, interactions between one atom and another in
that register, or interaction of the atoms in that register directly with things
that are happening along the program line, that we did not exactly bargain
for. In other words, there may be small terms in the Hamiltonian besides
the ones we have written.

Until we propose a complete implementation of this, it is very difficult
to analyze. At least some of these problems can be remedied in the usual
way by techniques such as error correcting codes, and so forth, that have
been studied in normal computers. But until we find a specific implemen-
tation for this computer, I do not know how to proceed to analyze these
effects. However, it appears that they would be very important, in practice.
This computer seems to be very delicate and these imperfections may
produce considerable havoc.

The time needed to make a step of calculation depends on the strength
or the energy of the interactions in the terms of the Hamiltonian. If each of
the terms in the Hamiltonian is supposed to be of the order of 0.1 electron
volts, then it appears that the time for the cursor to make each step, if done
in a ballistic fashion, is of the order 6 x 10 -15 sec. This does not represent

C <o q

p ~
I

H : q* cp + r*c*p

+ p*c*q + p*c r

IF c = t GO p TO q AND PUT c =O

IF c =O GO p TO r AND PUT c= I

IF c = I GO r TO p AND PUT c : O

IF c =O GO q TO p AND PUT c= I

Fig. 7. Switch.
Figure III.40: Switch element. 0/1 annotations on the wires show the c
values. [fig. from F85]

¶12. Negation: F writes Aa for the negation operation applied to a.
Obviously, Aa = a+ a⇤ (it annihilates |1i and creates from |0i)
and 1 = aa⇤ + a⇤a (it passes |0i and passes |1i.
Prove that AaAa = 1 (exercise).

¶13. CNOT: F writes Aa,b for the CNOT operation applied to lines a and
b.
Aa,b = a⇤a(b+ b⇤) + aa⇤.
Notice that this is a tensor product on the register |a, bi:
Aa,b = a⇤a ⌦ (b+ b⇤) + aa⇤ ⌦ 1.
You can write this formula Na ⌦ Ab + (1 � Na) ⌦ 1. That is, if Na

detects |1i, then it negates b.
If 1 � Na detects |0i, then it leaves b alone.

¶14. CCNOT: F writes Aab,c for the CCNOT operation applied to lines a,
b, and c.
Aab,c = 1+ a⇤ab⇤b(c+ c⇤ � 1) (exercise).
This formula is more comprehensible in this form:

Aab,c = 1+NaNb(Ac � 1).

¶15. SWITCH: One of Feynman’s universal computers is based on only
two logic gates, Not and Switch (Fig. III.40).
If c = |1i, then the “cursor” (locus of control) at p moves to q, but if

192 CHAPTER III. QUANTUM COMPUTATION
524 Feynman

O a

sMiNoT01tM
s = b + t

I s N t N I

Fig. 8. CONTROLLED NOT by switches,

In these diagrams, horizontal or vertical lines will represent program
atoms. The switches are represented by diagonal lines and in boxes we'll
put the other matrices that operate on registers such as the N O T b. To be
specific, the Hamiltonian for this little section of a C O N T R O L L E D NOT,
thinking of it as starting at s and ending at t, is given below:

He(s, t) = s ' a s + t*a*tM + t*(b + b*) sM + s~va*s

n t- l ' a t u q- t~rs u + C.C

(The c.c means to add the complex conjugate of all the previous terms.)
Although there seem to be two routes here which would possibly

produce all kinds of complications characteristic of quantum mechanics,
this is not so. If the entire computer system is started in a definite state for
a by the time the cursor reaches s, the atom a is still in some definite state
(although possibly different from its initial state due to previous computer
operations on it). Thus only one of the two routes is taken. The expression
may be simplified by omitting the S * I N term and putting t u = S N.

One need not be concerned in that case, that one route is longer (two
cursor sites) than the other (one cursor site) for again there is no inter-
ference. No scattering is produced in any case by the insertion into a chain
of coupled sites, an extra piece of chain of any number of sites with the
same mutual coupling between sites (analogous to matching impedances in
transmission lines).

To study, these things further, we think of putting pieces together. A
piece (see Fig. 9) M might be represented as a logical unit of interacting
parts in which we only represent the first input cursor site as sM and the
final one at the other end as tM. All the rest of the program sites that are
between sM and tM are considered internal parts of M, and M contains its
registers. Only sM and t M are sites that may be coupled externally.

Figure III.41: CNOT implemented by switches. 0/1 annotations on the wires
show the a values. [fig. from F85]

c = |0i it moves to r.
It also negates c in the process.

¶16. It’s also reversible (see Fig. III.40).

¶17. The switch is a tensor product on |c, p, q, ri:

q⇤cp+ r⇤c⇤p+ [p⇤c⇤q + p⇤cr].

(The bracketed expression is just the complex conjugate of the first
part, required for reversibility.) Read the factors in each term from
right to left:
(1) q⇤cp: if p and c are set, then unset them and set q.
(2) r⇤c⇤p: if p is set and c is not set, the unset p and set c and r.

¶18. CNOT: Fig. III.41 shows CNOT implemented by switches. This is the
controlled-NOT applied to data a, b and sequenced by cursor atoms s, t
(= start, terminate).

¶19. If a = 1 the cursor state moves along the top line, and if a = 0 along
the bottom.

¶20. If it moves along the top, then it applies b + b⇤ to negate b (otherwise
leaving it alone).

¶21. In either case, the cursor arrives at the reversed switch, where sets the
next cursor atom t.

F. UNIVERSAL QUANTUM COMPUTERS 193

Quantum Mechanical Computers 527

0 0 o4 sc o(, sMtMt' ,,
1 I / 0 tc

I SN 1 N It N I
Fig. 12. Conditional if a = l then M, else N.

As another example, we can deal with a garbage clearer (previously
described in Fig. 6) not by making two machines, a machine and its
inverse, but by using the same machine and then sending the data back to
the machine in the opposite direction, using our switch (see Fig. 13).

Suppose in this system we have a special flag which is originally
always set to 0. We also suppose we have the input data in an external
register, an empty external register available to hold the output, and the
machine registers all empty (containing 0's). We come on the starting
line s.

The first thing we do is to copy (using CONTROLLED NOT's) our
external input into M. Then M operates, and the cursor goes on the top
line in our drawing. It copies the output out of M into the external output
register. M now contains garbage. Next it changes f to NOT f, comes down
on the other line of the switch, backs out through M clearing the garbage,
and uncopies the input again.

When you copy data and do it again, you reduce one of the registers
to 0, the register into which you coied the first time. After the coying, it
goes out (since f is now changed) on the other line where we restore f to 0

f

coPY I

f

i ~ NOT f IJ

Fig. 13. Garbage clearer. Figure III.42: Garbage clearer. 0/1 annotations on the wires show the f
values. [fig. from F85]

¶22. We can write it

Ha,b(s, t) = s⇤
Mas+ t⇤a⇤tM + t⇤M(b+ b⇤)sM +s⇤

Na
⇤s+ t⇤atN + t⇤NsN +c.c,

where “c.c” means to add the complex conjugates of the preceding
terms. Read the factors in each term from right to left:
(1) s⇤

Mas: if s and a are set, then unset them and set sM .
(4) s⇤

Na
⇤s: if s is set and a in unset, then unset s and set sN and a.

(6) t⇤NsN : if sN is set, then unset it and set tN .
(3) t⇤M(b+ b⇤)sM : if sM is set, then unset it, negate b and set tM .
(5) t⇤atN : if tN and a are set (as a must be to get here), then unset
them and set t.
(2) t⇤a⇤tM : if tM is set and a is unset (as it must be to get here), then
reverse their states and set t.
(The t⇤NsN term can be eliminated by setting tN = sN .)

F.1.c Garbage clearer

¶1. Instead of having a separate copy of the machine to clear out the
garbage, it’s possible to run the same machine backwards (Fig. III.42).

¶2. Initial state: An external register In contains the input, and the
output register Out and all machine registers are all 0s.
s is the starting program atom.
The flag f is initially 0.

¶3. The f = 0 routes control through the reversed switch (setting f = 1)
to Copy.

194 CHAPTER III. QUANTUM COMPUTATION

¶4. The Copy box uses CNOTs to copy the external input into M

¶5. M operates, generating the result in an internal register.
M contains garbage.

¶6. The f = 1 flag directs control into the upper branch (resetting f = 0),
which uses CNOTs to copy the result into the external output register
Out.

¶7. Control passes out from the upper branch of the switch down and back
into the lower branch, which negates f , setting f = 1.

¶8. Control passes back into the machine through the lower switch branch
(resetting f = 0), and backwards through M , clearing out all the
garbage, restoring all the registers to 0s.

¶9. It passes backwards through the Copy box, copying the input back
from M to the external input register In.
This restores the internal register to 0s.

¶10. Control passes out through the lower branch of the left switch (setting
f = 1), but it negates f again, so f = 0.
It arrives at the terminal program atom t.

¶11. At the end of the process, everything is reset to the initial conditions,
except that we have the result in the Out register.

¶12. Subroutines etc.: F discusses how to do subroutines and other pro-
gramming constructs.

F.2 Benio↵ ’s quantum Turing machine

¶1. In 1980 Paul Benio↵ published the first design for a universal quantum
computer, which was based on the Turing machine.

¶2. Tape: The tape is represented by a finite lattice of quantum spin
systems with eigenstates corresponding to the tape symbols.
(Therefore, he cannot implement an open-ended TM tape, but neither
can an ordinary digital computer.)

¶3. Head: The head is a spinless system that moves along the lattice.

F. UNIVERSAL QUANTUM COMPUTERS 195

¶4. State: The state of the TM was represented by another spin system.

¶5. He defined unitary operators for doing the various operations (e.g.,
changing the tape).

¶6. In 1982 he extended his model to erase the tape, as in Bennett’s model.

¶7. Computation step: Each step was performed by measuring the tape
state under the head and the internal state (thus collapsing them) and
using this to control the unitary operator applied to the tape and state.

¶8. As a consequence, the computer does not make much use of superpo-
sition.

F.3 Deutsch’s universal quantum computer

This section is based on Deutsch, D., “Quantum theory, the Church-Turing
principle, and the universal quantum computer. Proc. Royal Soc. London
A, 400 (1985), pp. 97–119.

¶1. Benio↵’s computer is e↵ectively classical; it can be simulated by a
classical TM.

¶2. Feynman’s construction is not a true universal computer, since you
need to construct it for each computation, and it’s not obvious how to
get the required dynamical behavior.

¶3. Deutsch seeks a broader definition of quantum computation, and a
universal quantum computer Q.

¶4. Processor: “The processor consists of M 2-state observables, {ňi}”
(i 2 M), where M = {0, . . . ,M � 1}. Collectively they are called ň.

¶5. Memory: “The memory consists of an infinite sequence {m̌i} (i 2 Z)
of 2-state observables.” Collectively the sequence is called m̌.

¶6. Tape position: An observable x̌, with spectrum Z, represents the
tape position (address) of the head.

196 CHAPTER III. QUANTUM COMPUTATION

¶7. Computational basis states: The computational basis states have
the form:

|x;n;mi def

= |x;n
0

, n
1

, . . . , nM�1

; . . . ,m�1

,m
0

,m
1

, . . .i.

Here the eigenvectors are labeled by their eigenvalues x,n, and m.

¶8. Dynamics: The dynamics of computation is described by a unitary
operator U :

| (nT)i = Un| (0)i.

¶9. Initial tape: Initially, only a finite number of these are prepared in a
non-zero state.

| (0)i =
X
m

�m|0;0;mi, where
X
m

|�m|2 = 1,

“where only a finite number of the �m are non-zero and �m vanishes
whenever an infinite number of the m are non-zero.”
Note that this may be a superposition of initial tapes.

¶10. The non-zero entries are the program and its input.

¶11. Unitary operator: The matrix elements of U (relating the new state
to the current state) have the form:

hx0;n0;m0 | U | x;n;mi
= [�x+1

x0 U+(n0,m0
x|n,mx) + �x�1

x0 U�(n0,m0
x|n,mx)]

Y
y 6=x

�m
y

m
x

.

U+ and U� represent moves to the right and left, respectively.
The first two �s ensure that the tape position cannot move by more
than one position in a step.
The final product of deltas ensures that all the other tape positions are
unchanged; it’s equivalent to: 8y 6= x : my = mx.

¶12. The U+ and U� functions define the actual transitions of the machine
in terms of the processor state and the symbol under the tape head.
Each choice defines a quantum computer Q[U+, U�].

F. UNIVERSAL QUANTUM COMPUTERS 197

¶13. Halting: The machine cannot be observed before it has halted, since
it will generally alter its state.
Therefore one of the processor’s bits is chosen as a halt indicator.
It can be observed from time to time without a↵ecting the computation.

¶14. Power: Q can simulate TMs, but also any other quantum computer
to arbitrary precision.
It can simulate any finitely realizable physical system to arbitrary pre-
cision.
It can simulate some physical systems that go beyond the power of
TMs (hypercomputation).

