
B. FILTERING MODELS 245

Figure IV.7: Graph G
2

for Lipton’s algorithm (with two variables, x and y).
[source: Lipton (1995)]

B.2 Lipton: SAT

This lecture is based on Richard J. Lipton (1995), “DNA solution of hard
computational problems,” Science 268: 542–5.

B.2.a Review of SAT problem

¶1. Boolean satisfiability: The first problem proved to be NP-complete.

¶2. Use conjunctive normal form with n variables and m clauses.

¶3. Example:

(x
1

_ x0
2

_ x0
3

) ^ (x
3

_ x0
5

_ x
6

) ^ (x
3

_ x0
6

_ x
4

) ^ (x
4

_ x
5

_ x
6

),

where, for example, x0
2

= ¬x
2

.

B.2.b Data representation

¶1. Solutions: Solutions are n-bit binary strings.

¶2. These are thought of as paths through a particular graph Gn (see Fig.
IV.7).
For vertices ak, xk, x

0
k, k = 1, . . . , n, and an+1

,
there are edges from ak to xk and x0

k,
and from xk and x0

k to ak+1

.

¶3. Binary strings are represented by paths from a
1

to an+1

.
A path through xk encodes the assignment xk = 1 and through x0

k

encodes xk = 0.

246 CHAPTER IV. MOLECULAR COMPUTATION

¶4. The DNA encoding is essentially the same as in Adleman’s algorithm.

B.2.c Algorithm

¶1. Suppose we have an instance (formula) to be solved:
I = C

1

^ C
2

^ · · · ^ Cm.

¶2. Step 1 (initialization): Create a “test tube” (reaction vessel) of all
possible n-bit binary strings, encoded as above.
Call this test tube T

0

.

¶3. Step 2 (clause satisfaction): For each clause Ck, k = 1, . . . ,m:
Extract from Tk�1

only those strings that satisfy Ck, and put them in
Tk.
The goal is that for every string 8x 2 Tk81  j  k : Cj(x) = 1.
This is done as follows.

¶4. Extract operation: Let E(T, i, a) be the operation that extracts from
test tube T all (or most) of the strings whose ith bit is a.

¶5. For k = 0, . . . ,m � 1:
Precondition: The strings in Tk satisfy clauses C

1

, . . . , Ck.
Let ` = |Ck|, and suppose Ck+1

has the form v
1

_ · · · _ v`, where the vi

are literals (plain or complemented variables).

Let T
0

k = Tk.
Do the following for literals i = 1, . . . , `.

¶6. Positive literal: Suppose vi = xj (some positive literal).

Let T i
k = E(T

i�1

k , j, 1) and let a = 1.
These are the paths that satisfy this positive literal.

¶7. Negative literal: Suppose vi = x0
j (some negative literal).

Let T i
k = E(T

i�1

k , j, 0) and let a = 0.
These are the paths that satisfy this negative literal.

¶8. In either case, T i
k are the strings that satisfy literal i.

Let T
i

k = E(T
i�1

k , j,¬a) be the remaining strings (which do not satisfy
this literal).
Continue until all literals are processed.

B. FILTERING MODELS 247

¶9. Combine T 1

k , . . . , T
`
k into Tk+1

.
Postcondition: The strings in Tk+1

satisfy clauses C
1

, . . . , Ck+1

.

¶10. Step 3 (detection): At this point, the strings in Tm satisfy C
1

, . . . , Cm,
so do a detect operation to see if there are any strings left.
If there are, the formula is satisfiable; if not, not.

¶11. Performance: If the number of literals is fixed (as in 3SAT), then
performance is linear in m.

¶12. Errors: The main problem is the e↵ect of errors. But imperfections
in extraction are not fatal, so long as there are enough copies of the
desired sequence.

¶13. “A much larger (20 variable) instance of 3-SAT was successfully solved
by Adlemans group in an experiment described This is, to date, the
largest problem instance successfully solved by a DNA-based computer;
indeed, as the authors state, ‘this computational problem may yet be
the largest yet solved by nonelectronic means’.”5 This was in 2002.
220 ⇡ 106. It had 24 clauses.

5Amos 140.

