
Lecture Notes in

Unconventional Computation

Bruce MacLennan
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville

Copyright c�2015

Version of

August 18, 2015

Chapter I

Introduction

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. c�2015, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of August 18, 2015.

These lecture notes are exactly that: notes for my lectures. Don’t expect a
polished text, and you won’t be disappointed! (This chapter is an exception,
since it is written out in full.)

A Course mechanics

This is only the fourth time this course has been taught, and it is still evolv-
ing.

A.1 Contact information

This information can be found on the course website,
web.eecs.utk.edu/~mclennan/Classes/494-UC or
web.eecs.utk.edu/~mclennan/Classes/594-UC.

A.2 Grading

¶1. Homework: There will be paper-and-pencil homework (math or un-
conventional computer programming) every week or two.

¶2. Projects: There will be some small projects, including one using a
quantum computer simulator to solve a problem or test a design.

3

4 CHAPTER I. INTRODUCTION

¶3. Presentation (for grad students): Grad students will be expected
to do a 20 min. in-class presentation in the last weeks of the class. This
will be on a topic in unconventional computing that you can choose
from a list or propose yourself.

¶4. Term paper: All students will do a term paper, due during final exam
week, on some topic in unconventional computation. Grad students can
do their paper on the same topic as their presentation.

A.3 Other course information

¶1. We will spend about one week on the physics of computation, about
two months on quantum computing, about three weeks on molecular
computing (mostly DNA computing), and any remaining time on ana-
log computing or other unconventional computing paradigms. The last
week or so will be graduate student presentations.

¶2. Prerequisites: The only real prerequisite is linear algebra. I will
assume everyone has something like first-year physics; this is definitely
not a physics course!

¶3. I will post lecture notes on the website, which you can use for correcting
or filling in your personal notes. They will not substitute for attending
class, and if attendance is a problem, I will have pop quizzes.

¶4. Reading assignment: As a supplement to this first lecture, read the
remainder of this chapter (which in this case is complete text, not just
notes). About 20 pages.

B What is unconventional computation?

Unconventional computation and its synonym, nonstandard computation, are
negative terms; they refer to computation that is not “conventional” or “stan-
dard.” Conventional computation is the kind we are all familiar with, which
has dominated computer science since the 1950s. We can enumerate its com-
mon characteristics:

• Information representation and processing is digital and in fact binary.

C. POST-MOORE’S LAW COMPUTING 5

• Computers are organized according to the von Neumann architecture,
which separates memory from a processor that fetches data from mem-
ory for processing and then returns it to memory.

• Memory is organized as one or more arrays of units (bytes or words)
indexed by natural numbers.

• The processor executes instructions sequentially, one at a time, from
memory; therefore instructions are encoded in binary.

• The sequential binary logic of the processor is implemented by means
of electronically-controlled electronic switches.

• Programs are written as hierarchically organized sequences of instruc-
tions, which perform computation, input, output, and control of pro-
gram execution.

• Programs can decide between alternative sequences of instructions.

• Programs can repeat sequences of instructions until some condition is
satisfied.

• Programs can be hierarchically organized into subprograms, subpro-
grams of subprograms, etc.

Unconventional computers, then, are di↵erent in at least one of these char-
acteristics.

C Post-Moore’s Law computing

Although estimates di↵er, it is clear that the end of Moore’s Law is in sight;
there are physical limits to the density of binary logic devices and to their
speed of operation.1 This will require us to approach computation in new
ways, which present significant challenges, but can also broaden and deepen
our concept of computation in natural and artificial systems.

In the past there has been a significant di↵erence in scales between com-
putational processes and the physical processes by which they are realized.

1This section is adapted from MacLennan (2008). Moore’s Law was stated in Moore
(1965).

6 CHAPTER I. INTRODUCTION

Fall 2012 Unconventional Computation 7

Differences in Spatial Scale
2.71828

0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0

… …

(Images from Wikipedia)
Figure I.1: Hierarchy of spatial scales in conventional computing.

For example, there are di↵erences in spatial scale: the data with which pro-
grams operate (integers, floating point numbers, characters, pointers, etc.)
are represented by large numbers of physical devices comprising even larger
numbers of physical particles (Fig. I.1). Also, there are di↵erences in time
scale: elementary computational operations (arithmetic, instruction sequenc-
ing, memory access, etc.), are the result of large numbers of state changes
at the device level (typically involving a device moving from one saturated
state to another) (Fig. I.2). However, increasing the density and speed of
computation will force it to take place on the scale (spatial and temporal)
near that of the underlying physical processes. With fewer hierarchical levels
between computations and their physical realizations, and less time for im-
plementing computational processes, computation will have to become more
like the underlying physical processes. That is, post-Moore’s Law computing
will depend on a greater assimilation of computation to physics.

In discussing the role of physical embodiment in the “grand challenge” of
unconventional computing, Stepney (2004, p 29) writes,

Computation is physical; it is necessarily embodied in a device
whose behaviour is guided by the laws of physics and cannot be
completely captured by a closed mathematical model. This fact

C. POST-MOORE’S LAW COMPUTING 7

Fall 2012 Unconventional Computation 8

P[0] := N
i := 0
while i < n do
 if P[i] >= 0 then
 q[n-(i+1)] := 1
 P[i+1] := 2*P[i] - D
 else
 q[n-(i+1)] := -1
 P[i+1] := 2*P[i] + D
 end if
 i := i + 1
end while

X := Y / Z

(Images from Wikipedia)
Figure I.2: Hierarchy of temporal scales in conventional computing.

8 CHAPTER I. INTRODUCTION

of embodiment is becoming ever more apparent as we push the
bounds of those physical laws.

Traditionally, a sort of Cartesian dualism has reigned in computer science;
programs and algorithms have been conceived as idealized mathematical ob-
jects; software has been developed, explained, and analyzed independently
of hardware; the focus has been on the formal rather than the material.
Post-Moore’s Law computing, in contrast, because of its greater assimilation
to physics, will be less idealized, less independent of its physical realization.
On one hand, this will increase the di�culty of programming since it will
be dependent on (or, some might say, contaminated by) physical concerns.
On the other hand, as will be explored in this class, it also presents many
opportunities that will contribute to our understanding and application of
information processing in the future.

D Super-Turing vs. non-Turing

In addition to the practical issues of producing more powerful computers, un-
conventional computation poses the question of its theoretical power.2 Might
some forms of unconventional computation provide a means of super-Turing
computation (also called hypercomputation), that is, of computation beyond
what is possible on a Turing machine? This is an important theoretical ques-
tion, but obsession with it can divert attention from more significant issues
in unconventional computing. Therefore it is worth addressing it before we
get into specific unconventional computing paradigms.

D.1 The limits of Turing computation

D.1.a Frames of Relevance

It is important to remember that Church-Turing (CT) computation is amodel
of computation, and that computation is a physical process taking place
in certain physical objects (such as computers). Models are intended to
help us understand some class of phenomena, and they accomplish this by
making simplifying assumptions (typically idealizing assumptions, which omit
physical details taken to be of secondary importance). For example, we might

2This section is adapted from MacLennan (2009b).

D. SUPER-TURING VS. NON-TURING 9

use a linear mathematical model of a physical process even though we know
that its dynamics is only approximately linear; or a fluid might be modeled
as infinitely divisible, although we know it is composed of discrete molecules.
We are familiar also with the fact that several models may be used with
a single system, each model suited to understanding certain aspects of the
system but not others. For example, a circuit diagram shows the electrical
interconnections among components (qua electrical devices), and a layout
diagram shows the components’ sizes, shapes, spatial relationships, etc.

As a consequence of its simplifying assumptions, each model comes with
a (generally unstated) frame of relevance, which delimits (often imprecisely)
the questions that the model can answer accurately. For example, it would
be a mistake to draw conclusions from a circuit diagram about the size,
shape, or physical placement of circuit components. Conversely, little can be
inferred about the electrical properties of a circuit from a layout diagram.

Within a (useful) model’s frame of relevance, its simplifying assumptions
are sensible (e.g., they are good approximations); outside of it they may not
be. That is, within its frame of relevance a model will give us good answers
(not necessarily 100% correct) and help us to understand the characteristics
of the system that are most relevant in that frame. Outside of its intended
frame, a model might give good answers (showing that its actual frame can
be larger than its intended frame), but we cannot assume that to be so. Out-
side of its frame, the answers provided by a model may reflect the simplifying
assumptions of the model more than the system being modeled. For exam-
ple, in the frame of relevance of macroscopic volumes, fluids are commonly
modeled as infinitely divisible continua (an idealizing assumption), but if we
apply such a model to microscopic (i.e., molecular scale) volumes, we will get
misleading answers, which are a consequence of the simplifying assumptions.

D.1.b The frame of relevance of Church-Turing computation

It is important to explicate the frame of relevance of Church-Turing compu-
tation, by which I mean not just Turing machines, but also equivalent models
of computation, such as the lambda calculus and Post productions, as well as
other more or less powerful models based on similar assumptions (discussed
below). (Note however that the familiar notions of equivalence and power
are themselves dependent on the frame of relevance of these models, as will
be discussed.) The CT frame of relevance becomes apparent if we recall the
original questions the model was intended to answer, namely questions of ef-

10 CHAPTER I. INTRODUCTION

fective calculability and formal derivability. As is well known, the CT model
arises from an idealized description of what a mathematician could do with
pencil and paper. Although a full analysis of the CT frame of relevance is
beyond the scope of this chapter (but see MacLennan, 1994b, 2003, 2004), I
will mention a few of the idealizing assumptions.

Within the CT frame of relevance, something is computable if it can be
computed with finite but unbounded resources (e.g., time, memory). This
is a reasonable idealizing assumption for answering questions about formal
derivability, since we don’t want our notion of a proof to be limited in length
or “width” (size of the formal propositions). It is also a reasonable simplifying
assumption for investigating the limits of e↵ective calculability, which is a
idealized model of arithmetic with paper and pencil. Again, in the context
of the formalist research program in mathematics, there was no reason to
place an a priori limit on the number of steps or the amount of paper (or
pencil lead!) required. Note that these are idealizing assumptions: so far
as we know, physical resources are not unbounded, but these bounds were
not considered relevant to the questions that the CT model was originally
intended to address; in this frame of relevance “finite but unbounded” is a
good idealization of “too large to be worth worrying about.”

Both formal derivation and e↵ective calculation make use of finite for-
mulas composed of discrete tokens, of a finite number of types, arranged
in definite structures (e.g., strings) built up according to a finite number of
primitive structural relationships (e.g., left-right adjacency). It is further
assumed that the types of the tokens are positively determinable, as are the
primitive interrelationships among them. Thus, in particular, we assume that
there is no uncertainty in determining whether a token is present, whether a
configuration is one token or more than one, what is a token’s type, or how
the tokens are arranged, and we assume that they can be rearranged with
perfect accuracy according to the rules of derivation. These are reasonable
assumptions in the study of formal mathematics and e↵ective calculability,
but it is important to realize that they are idealizing assumptions, for even
mathematicians can make mistakes in reading and copying formulas and in
applying formal rules!

Many of these assumptions are captured by the idea of a calculus, but
a phenomenological analysis of this concept is necessary to reveal its back-
ground of assumptions (MacLennan, 1994b). Briefly, we may state that both
information representation and information processing are assumed to be
formal, finite, and definite (MacLennan, 2003, 2004). These and other as-

D. SUPER-TURING VS. NON-TURING 11

sumptions are taken for granted by the CT model because they are reasonable
in the context of formal mathematics and e↵ective calculability. Although
the originators of the model discussed some of these simplifying assumptions
(e.g., Markov, 1961), many people today do not think of them as assumptions
at all, or consider that they might not be appropriate in some other frames
of relevance.

It is important to mention the concept of time presupposed in the CT
model, for it is not discrete time in the familiar sense in which each unit of
time has the same duration; it is more accurate to call it sequential time (van
Gelder, 1997). This is because the CT model does not take into consideration
the time required by an individual step in a derivation or calculation, so long
as it is finite. Therefore, while we can count the number of steps, we cannot
translate that count into real time, since the individual steps have no definite
duration. As a consequence, the only reasonable way to compare the time
required by computational processes is in terms of their asymptotic behavior.
Again, sequential time is reasonable in a model of formal derivability or
e↵ective calculability, since the time required for individual operations was
not relevant to the research programme of formalist mathematics (that is,
the time was irrelevant in that frame of relevance), but it can be very relevant
in other contexts, as will be discussed.

Finally I will mention a simplifying assumption of the CT model that is
especially relevant to hypercomputation, namely, the assumption that com-
putation is equivalent to evaluating a well-defined function on an argument.
Certainly, the mathematical function, in the full generality of its definition,
is a powerful and versatile mathematical concept. Almost any mathemat-
ical object can be treated as a function, and functions are essential to the
description of processes and change in the physical sciences. Therefore, it
was natural, in the context of the formalist program, to focus on functions in
the investigation of e↵ective calculation and derivation. Furthermore, many
early applications of computers amounted to function evaluations: you put
in a deck of cards or mounted a paper or magnetic tape, started the pro-
gram, it computed for awhile, and when it stopped you had an output in
the form of cards, tape, or printed paper. Input — compute — output, that
was all there was to it. If you ran the program again with a di↵erent input,
that amounted to an independent function evaluation. The only relevant as-
pect of a program’s behavior was the input-output correspondence (i.e., the
mathematical function).

This view can be contrasted with newer ones in which, for example, a

12 CHAPTER I. INTRODUCTION

computation involves continuous, non-terminating interaction with its envi-
ronment, such as might be found in control systems and autonomous robotics.
Some new models of computation have moved away from the idea of compu-
tation as the evaluation of a fixed function (Eberbach et al., 2003; Milner,
1993; Milner et al., 1992; Wegner, 1997, 1998; Wegner & Goldin, 2003).

However, in the CT frame of relevance the natural way to compare the
“power” of models of computation was in terms of the classes of functions
they could compute, a single dimension of power now generalized into a
partial order of set inclusions (but still based on a single conception of power:
computing a class of functions).3

D.2 New computational models

A reasonable position, which many people take explicitly or implicitly, is
that the CT model is a perfectly adequate model of everything we mean
by “computation,” and therefore that any answers that it a↵ords us are
definitive. However, as we have seen, the CT model exists in a frame of
relevance, which delimits the kinds of questions that it can answer accurately,
and, as I will show, there are important computational questions that fall
outside this frame of relevance.

D.2.a Natural computation

Natural computation may be defined as computation occurring in nature or
inspired by computation in nature. The information processing and control
that occurs in the brain is perhaps the most familiar example of computa-
tion in nature, but there are many others, such as the distributed and self-
organized computation by which social insects solve complicated optimiza-
tion problems and construct and manage sophisticated, highly structured
nests. Also, the DNA of multicellular organisms defines a developmental
program that creates the detailed and complex structure of the adult organ-
ism. For examples of computation inspired by that in nature, we may cite
artificial neural networks, genetic algorithms, artificial immune systems, and
ant swarm optimization, to name just a few. Next I will consider a few of

3I note in passing that this approach raises all sorts of knotty cardinality questions,
which are inevitable when we deal with such “large” classes; therefore in some cases results
depend on a particular axiomatization or philosophy of mathematics.

D. SUPER-TURING VS. NON-TURING 13

the issues that are important in natural computation, but outside the frame
of relevance of the CT model.

One of the most obvious issues is that, because computation in nature
serves an adaptive purpose, it must satisfy stringent real-time constraints.
For example, an animal’s nervous system must respond to a stimulus —
fight or flight, for example — in a fraction of a second. Also, in order to
control coordinated sensorimotor behavior, the nervous system has to be
able to process sensory and proprioceptive inputs quickly enough to generate
e↵ector control signals at a rate appropriate to the behavior. And an ant
colony must be able to allocate workers appropriately to various tasks in real
time in order to maintain the health of the colony.

In nature, asymptotic complexity is generally irrelevant; the constants
matter and input size is generally fixed or varies over a relatively limited range
(e.g., numbers of sensory receptors, colony size). Whether the algorithm
is linear, quadratic, or exponential is not so important as whether it can
deliver useful results in required real-time bounds in the cases that actually
occur. The same applies to other computational resources. For example, it is
not so important whether the number of neurons required varies linearly or
quadratically with the number of inputs to the network; what matters is the
absolute number of neurons required for the actual number of inputs, and
how well the system will perform with the number of inputs and neurons it
actually has.

Therefore, in natural computation, what does matter is how the real-time
response rate of the system is related to the real-time rates of its components
(e.g., neurons, ants) and to the actual number of components. This means
that it is not adequate to treat basic computational processes as having an
indeterminate duration or speed, as is commonly done in the CT model.
In the natural-computation frame of relevance, knowing that a computation
will eventually produce a correct result using finite but unbounded resources
is largely irrelevant. The question is whether it will produce a good-enough
result using available resources subject to real-time constraints.

Many of the inputs and outputs to natural computation are continuous
in magnitude and vary continuously in real time (e.g., intensities, concen-
trations, forces, spatial relations). Many of the computational processes are
also continuous, operating in continuous real time on continuous quantities
(e.g., neural firing frequencies and phases, dendritic electrical signals, pro-
tein synthesis rates, metabolic rates). Obviously these real variables can be
approximated arbitrarily closely by discrete quantities, but that is largely

14 CHAPTER I. INTRODUCTION

irrelevant in the natural-computation frame of relevance. The most natural
way to model these systems is in terms of continuous quantities and processes.

If the answers to questions in natural computation seem to depend on
“metaphysical issues,” such as whether only Turing-computable reals exist,
or whether all the reals of standard analysis exist, or whether non-standard
reals exist, then I think that is a sign that we are out of the model’s frame
of relevance, and that the answers are more indicative of the model itself
than of the modeled natural-computation system. For models of natural
computation, naive real analysis, like that commonly used in science and
engineering, should be more than adequate; it seems unlikely that disputes
in the foundations of mathematics will be relevant to our understanding how
brains coordinate animal behavior, how ants and wasps organize their nests,
how embryos self-organize, and so forth.

D.2.b Cross-frame comparisons

This example illustrates the more general pitfalls that arise from cross-frame
comparisons. If two models have di↵erent frames of relevance, then they will
make di↵erent simplifying and idealizing assumptions; for example objects
whose existence is assumed in one frame (such as standard real numbers)
may not exist in the other (where all objects are computable). Therefore,
a comparison requires that one of the models be translated from its own
frame to the other (or that both be translated to a third), and, in doing this
translation, assumptions compatible with the new frame will have to be made.
For example, if we want to investigate the computational power of neural nets
in the CT frame (i.e., in terms of classes of functions of the integers), then
we will have to decide how to translate the naive continuous variables of
the neural net model into objects that exist in the CT frame. For instance,
we might choose fixed-point numbers, computable reals (represented in some
way by finite programs), or arbitrary reals (represented by infinite discrete
structures). We then discover (as reported in the literature: e.g., Maass &
Sontag, 1999a; Siegelmann & Sontag, 1994a), that our conclusions depend
on the choice of numerical representation (which is largely irrelevant in the
natural-computation frame). That is, our conclusions are more a function of
the specifics of the cross-frame translation than of the modeled systems.

Such results tell us nothing about, for example, why brains do some
things so much better than do contemporary computers, which are made of
much faster components. That is, in the frame of natural computation, the

D. SUPER-TURING VS. NON-TURING 15

issue of the representation of continuous quantities does not arise, for it is
irrelevant to the questions addressed by this frame, but this issue is crucial
in the CT frame. Conversely, from within the frame of the CT model, much
of what is interesting about neural net models (parallelism, robustness, real-
time response) becomes irrelevant. Similar issues arise when the CT model
is taken as a benchmark against which to compare unconventional models of
computation, such as quantum and molecular computation.

D.2.c Relevant issues for natural computation

We have seen that important issues in the CT frame of relevance, such as
asymptotic complexity and the computability of classes of functions, are not
so important in natural computation. What, then, are the relevant issues?

One important issue in natural computation is robustness, by which I
mean e↵ective operation in the presence of noise, uncertainty, imprecision,
error, and damage, all of which may a↵ect the computational process as
well as its inputs. In the CT model, we assume that a computation should
produce an output exactly corresponding to the evaluation of a well-defined
function on a precisely specified input; we can, of course, deal with error
and uncertainty, but it’s generally added as an afterthought. Natural com-
putation is better served by models that incorporate this indefiniteness a
priori.

In the CT model, the basic standard of correctness is that a program
correctly compute the same outputs as a well-defined function evaluated on
inputs in that function’s domain. In natural computation, however, we are
often concerned with generality and flexibility, for example: How well does
a natural computation system (such as a neural network) respond to inputs
that are not in its intended domain (the domain over which it was trained or
for which it was designed)? How well does a neural control system respond
to unanticipated inputs or damage to its sensors or e↵ectors? A related
issue is adaptability: How well does a natural computation system change its
behavior (which therefore does not correspond to a fixed function)?

Finally, many natural computation systems are not usefully viewed as
computing a function at all. As previously remarked, with a little cleverness
anything can be viewed as a function, but this is not the simplest way to
treat many natural systems, which often are in open and continuous interac-
tion with their environments and are e↵ectively nonterminating. In natural
computation we need to take a more biological view of a computational sys-

16 CHAPTER I. INTRODUCTION

tem’s “correctness” (better: e↵ectiveness). It will be apparent that the CT
model is not particularly well suited to addressing many of these issues, and
in a number of cases begs the questions or makes assumptions incompatible
with addressing them. Nevertheless, real-time response, generality, flexibility,
adaptability, and robustness in the presence of noise, error, and uncertainty
are important issues in the frame of relevance of natural computation.

D.2.d Nanocomputation

Nanocomputation is another domain of computation that seems to be out-
side the frame of relevance of the CT model. By nanocomputation I mean
any computational process involving sub-micron devices and arrangements of
information; it includes quantum computation (Ch. III) and molecular com-
putation (e.g., DNA computation), in which computation proceeds through
molecular interactions and conformational changes (Ch. IV).

Due to thermal noise, quantum e↵ects, etc., error and instability are un-
avoidable characteristics of nanostructures. Therefore they must be taken
as givens in nanocomputational devices and in their interrelationships (e.g.,
interconnections), and also in the structures constructed by nanocomputa-
tional processes (e.g., in algorithmic self-assembly: Winfree, 1998). There-
fore, a “perfect” structure is an over-idealized assumption in the context
of nanocomputation; defects are unavoidable. In many cases structures are
not fixed, but are stationary states occurring in a system in constant flux.
Similarly, unlike in the CT model, nanocomputational operations cannot
be assumed to proceed correctly, for the probability of error is always non-
negligible. Error cannot be considered a second-order detail added to an
assumed perfect computational system, but should be built into a model
of nanocomputation from the beginning. Indeed, operation cannot even be
assumed to proceed uniformly forward. For example, chemical reactions al-
ways have a non-zero probability of moving backwards, and therefore molec-
ular computation systems must be designed so that they accomplish their
purposes in spite of such reversals. This is a fundamental characteristic of
molecular computation, which should be an essential part of any model of it.

D.2.e Summary of issues

In summary, the notion of super-Turing computation, stricto sensu, exists
only in the frame of relevance of the Church-Turing model of computation,

D. SUPER-TURING VS. NON-TURING 17

for the notion of being able to compute “more” than a Turing machine pre-
supposes a particular notion of “power.” Although it is interesting and im-
portant to investigate where unconventional models of computation fall in
this computational hierarchy, it is also important to explore non-Turing com-
putation, that is, models of computation with di↵erent frames of relevance
from the CT model. Several issues arise in the investigation of non-Turing
computation: (1) What is computation in the broad sense? (2) What frames
of relevance are appropriate to unconventional conceptions of computation
(such as natural computation and nanocomputation), and what sorts of mod-
els do we need for them? (3) How can we fundamentally incorporate error,
uncertainty, imperfection, defects, faults and reversibility into computational
models? (4) How can we systematically exploit new physical processes (quan-
tum, molecular, biological, optical) for computation? The remainder of this
chapter addresses issues (1) and (4).

D.3 Computation in general

D.3.a Kinds of computation

Historically, there have been many kinds of computation, and the existence of
alternative frames of relevance shows us the importance of non-Turing models
of computation. How, then, can we define “computation” in su�ciently
broad terms? Prior to the twentieth century computation involved operations
on mathematical objects by means of physical manipulation. The familiar
examples are arithmetic operations on numbers, but we are also familiar with
the geometric operations on spatial objects of Euclidean geometry, and with
logical operations on formal propositions. Modern computers operate on a
much wider variety of objects, including character strings, images, sounds,
and much else. Therefore, the observation that computation uses physical
processes to accomplish mathematical operations on mathematical objects
must be understood in the broadest sense, that is, as abstract operations on
abstract objects. In terms of the traditional distinction between form and
matter, we may say that computation uses material states and processes to
realize (implement) formal operations on abstract forms. But what sorts of
physical processes?

18 CHAPTER I. INTRODUCTION

D.3.b Effectiveness and mechanism

The concepts of e↵ectiveness and mechanism, familiar from CT computa-
tion, are also relevant to computation in a broader sense, but they must be
similarly broadened. To do this, we may consider the two primary uses to
which models of computation are put: understanding computation in nature
and designing computing devices. In both cases the model relates informa-
tion representation and processing to underlying physical processes that are
considered unproblematic within the frame of relevance of the model.

For example, the CT model sought to understand e↵ective calculability
and formal derivability in terms of simple processes of symbol recognition and
manipulation, such as are routinely performed by mathematicians. Although
these are complex processes from a cognitive science standpoint, they were
considered unproblematic in the context of metamathematics. Similarly, in
the context of natural computation, we may expect a model of computation
to explain intelligent information processing in the brain in terms of electro-
chemical processes in neurons (considered unproblematic in the context of
neural network models). Or we may expect a di↵erent model to explain the
e�cient organization of an ant colony in term of pheromone emission and
detection, simple stimulus-response rules, etc. In all these cases the explana-
tion is mechanistic, in the sense that it refers to primary qualities, which can
be objectively measured or positively determined, as opposed to secondary
qualities, which are subjective or depend on human judgment, feeling, etc.
(all, of course, in the context to the intended purpose of the model); mea-
surements and determinations of primary qualities are e↵ective in that their
outcomes are reliable and dependable.

A mechanistic physical realization is also essential if a model of compu-
tation is to be applied to the design of computing devices. We want to use
physical processes that are e↵ective in the broad sense that they result re-
liably in the intended computations. In this regard, electronic binary logic
has proved to be an extraordinarily e↵ective mechanism for computation. (In
Sec. D.4.b I will discuss some general e↵ectiveness criteria.)

D.3.c Multiple realizability

Although the forms operated upon by a computation must be materially
realized in some way, a characteristic of computation that distinguishes it
from other physical processes is that it is independent of specific material

D. SUPER-TURING VS. NON-TURING 19

realization. That is, although a computation must be materially realized
in some way, it can be realized in any physical system having the required
formal structure. (Of course, there will be practical di↵erences between dif-
ferent physical realizations, but I will defer consideration of them until later.)
Therefore, when we consider computation qua computation, we must, on the
one hand, restrict our attention to formal structures that are mechanistically
realizable, but, on the other, consider the processes independently of any
particular mechanistic realization.

These observations provide a basis for determining whether or not a par-
ticular physical system (in the brain, for example) is computational (MacLen-
nan, 1994c, 2004). If the system could, in principle at least, be replaced by
another physical system having the same formal properties and still accom-
plish its purpose, then it is reasonable to consider the system computational
(because its formal structure is su�cient to fulfill its purpose). On the other
hand, if a system can fulfill its purpose only by control of particular sub-
stances or particular forms of energy (i.e., it is not independent of a specific
material realization), then it cannot be purely computational. (Nevertheless,
a computational system will not be able to accomplish its purpose unless it
can interface properly with its physical environment; this is a topic I will
consider in Sec. D.3.f.)

D.3.d Defining computation

Based on the foregoing considerations, we have the following definition of
computation (MacLennan, 1994c, 2004, 2009b):

Definition 1 Computation is a mechanistic process, the purpose of which
is to perform abstract operations on abstract objects.

Alternately, we may say that computation accomplishes the formal trans-
formation of formal objects by means of mechanistic processes operating on
the objects’ material embodiment. The next definition specifies the relation
between the physical and abstract processes:

Definition 2 A mechanistic physical system realizes a computation if, at the
level of abstraction appropriate to its purpose, the abstract transformation of
the abstract objects is a su�ciently accurate model of the physical process.
Such a physical system is called a realization of the computation.

20 CHAPTER I. INTRODUCTION

That is, the physical system realizes the computation if we can see the ma-
terial process as a su�ciently accurate embodiment of the formal structure,
where the su�ciency of the accuracy must be evaluated in the context of
the system’s purpose. Mathematically, we may say that there is a homomor-
phism from the physical system to the abstract system, because the abstract
system has some, but not all, of the formal properties of the physical system
(MacLennan, 1994a, 2004). The next definition classifies various systems,
both natural and artificial, as computational:

Definition 3 A physical system is computational if its function (purpose)
is to realize a computation.

Definition 4 A computer is an artificial computational system.

Thus the term “computer” is restricted to intentionally manufactured com-
putational devices; to call the brain a computer is a metaphor. These def-
initions raise a number of issues, which I will discuss briefly; no doubt the
definitions can be improved.

D.3.e Purpose

First, these definitions make reference to the function or purpose of a system,
but philosophers and scientists are justifiably wary of appeals to purpose, es-
pecially in a biological context. However, the use of purpose in the definition
of computation is unproblematic, for in most cases of practical interest, pur-
pose is easy to establish. (There are, of course, borderline cases, but that
fact does not invalidate the definition.) On the one hand, in a technological
context, we can look to the stated purpose for which an artificial system was
designed. On the other, in a biological context, scientists routinely inves-
tigate the purposes (functions) of biological systems, such as the digestive
system and immune system, and make empirically testable hypotheses about
their purposes. Ultimately such claims of biological purpose may be reduced
to a system’s selective advantage to a particular species in that species’ en-
vironment of evolutionary adaptedness, but in most cases we can appeal to
more immediate ideas of purpose.

On this basis we may identify many natural computational systems. For
example, the function of the brain is primarily computational (in the sense
used here), which is easiest to see in sensory areas. For example, there is
considerable evidence that an important function of primary visual cortex is

D. SUPER-TURING VS. NON-TURING 21

to perform a Gabor wavelet transform on visual data (Daugman, 1993); this
is an abstract operation that could, in principal, be realized by a non-neural
physical system (such as a computer chip). Also, pheromone-mediated in-
teractions among insects in colonies often realize computational ends such as
allocation of workers to tasks and optimization of trails to food sources. Like-
wise DNA transcription, translation, replication, repair, etc., are primarily
computational processes.

However, there is a complication that arises in biology and can be ex-
pected to arise in our biologically-inspired robots and more generally in
post-Moore’s Law computing. That is, while the distinction between com-
putational and non-computational systems is significant to us, it does not
seem to be especially significant to biology. The reason may be that we are
concerned with the multiple realizability of computations, that is, with the
fact that they have alternative realizations, for this property allows us to
consider the implementation of a computation in a di↵erent technology, for
example in electronics rather than in neurons. In nature, typically, the real-
ization is given, since natural life is built upon a limited range of substances
and processes. On the other hand, there is often selective pressure in favor of
exploiting a biological system for as many purposes as possible. Therefore, in
a biological context, we expect physical systems to serve multiple functions,
and therefore many such systems will not be purely computational; they
will fulfill other functions besides computation. From this perspective, it is
remarkable how free nervous systems are of non-computational functions.

D.3.f Transduction

The purpose of computation is the abstract transformation of abstract ob-
jects, but obviously these formal operations will be pointless unless the com-
putational system interfaces with its environment in some way. Certainly
our computers need input and output interfaces in order to be useful. So
also computational systems in the brain must interface with sensory recep-
tors, muscles, and many other noncomputational systems to fulfill their func-
tions. In addition to these practical issues, the computational interface to the
physical world is relevant to the symbol grounding problem, the philosophi-
cal question of how abstract symbols can have real-world content (Harnad,
1990, 1993; MacLennan, 1993). Therefore we need to consider the interface
between a computational system and its environment, which comprises input
and output transducers.

22 CHAPTER I. INTRODUCTION

The relation of transduction to computation is easiest to see in the case
of analog computers. The inputs and outputs of the computational system
have some physical dimensions (light intensity, air pressure, mechanical force,
etc.), because they must have a specific physical realization for the system
to accomplish its purpose. On the other hand, the computation itself is
essentially dimensionless, since it manipulates pure numbers. Of course,
these internal numbers must be represented by some physical quantities, but
they can be represented in any appropriate physical medium. In other words,
computation is generically realized, that is, realized by any physical system
with an appropriate formal structure, whereas the inputs and outputs are
specifically realized, that is, constrained by the environment with which they
interface to accomplish the computational system’s purpose.

Therefore we can think of (pure) transduction as changing matter (or
energy) while leaving form unchanged, and of computation as transforming
form independently of matter (or energy). In fact, most transduction is not
pure, for it modifies the form as well as the material substrate, for example, by
filtering. Likewise, transductions between digital and analog representations
transform the signal between discrete and continuous spaces.

D.3.g Classification of computational dynamics

The preceding definition of computation has been framed quite broadly, to
make it topology-neutral, so that it encompasses all the forms of computation
found in natural and artificial systems. It includes, of course, the familiar
computational processes operating in discrete steps and on discrete state
spaces, such as in ordinary digital computers. It also includes continuous-
time processes operating on continuous state spaces, such as found in conven-
tional analog computers and field computers (Adamatzky, 2001; Adamatzky
et al., 2005; MacLennan, 1987, 1999). However, it also includes hybrid pro-
cesses, incorporating both discrete and continuous computation, so long as
they are mathematically consistent (MacLennan, 2010). As we expand our
computational technologies outside of the binary electronic realm, we will
have to consider these other topologies of computation. This is not so much
a problem as an opportunity, for many important applications, especially in
natural computation, are better matched to these alternative topologies.

In connection with the classification of computational processes in terms
of their topologies, it is necessary to say a few words about the relation be-
tween computations and their realizations. A little thought will show that

D. SUPER-TURING VS. NON-TURING 23

a computation and its realizations do not have to have the same topology,
for example, discrete or continuous. For instance, the discrete computations
performed on our digital computers are in fact realized by continuous phys-
ical systems obeying Maxwell’s equations. The realization is approximate,
but exact enough for practical purposes. Conversely a discrete system can
approximately realize a continuous system, analogously to numerical integra-
tion on a digital computer. In comparing the topologies of the computation
and its realization, we must describe the physical process at the relevant
level of analysis, for a physical system that is discrete on one level may be
continuous on another. (The classification of computations and realizations
is discussed in MacLennan, 2004.)

D.4 Expanding the range of computing technologies

D.4.a A vicious cycle

A powerful feedback loop has amplified the success of digital VLSI technol-
ogy to the exclusion of all other computational technologies. The success
of digital VLSI encourages and finances investment in improved tools, tech-
nologies, and manufacturing methods, which further promote the success of
digital VLSI. Unfortunately this feedback loop threatens to become a vi-
cious cycle. We know that there are limits to digital VLSI technology, and,
although estimates di↵er, we will reach them soon (see Ch. II). We have
assumed there will always be more bits and more flops, but that assumption
is false. Unfortunately, alternative technologies and models of computation
remain undeveloped and largely uninvestigated, because the rapid advance
of digital VLSI has surpassed them before they could be adequately refined.
Investigation of alternative computational technologies is further constrained
by the assumption that they must support binary logic, because that is the
only way we know how to compute, or because our investment in this model
of computation is so large. Nevertheless, we must break out of this vicious
cycle or we will be technologically unprepared when digital VLSI finally, and
inevitably, reaches its limits.

D.4.b General guidelines

Therefore, as a means of breaking out of this vicious cycle, let us step back
and look at computation and computational technologies in the broadest

24 CHAPTER I. INTRODUCTION

sense. What sorts of physical processes can we reasonably expect to use for
computation? Based on the preceding discussion, we can see that any math-
ematical process, that is, any abstract transformation of abstract objects, is
a potential computation. Therefore, in principle, any reasonably controllable,
mathematically described, physical process can be used for computation. Of
course, there are practical limitations on the physical processes usable for
computation, but the range of possible technologies is much broader than
might be suggested by a narrow conception of computation. Considering
some of the requirements for computational technologies will reveal some of
the possibilities as well as the limitations.

One obvious issue is speed. The rate of the physical process may be either
too slow or too fast for a particular computational application. That it might
be too slow is obvious, for the development of conventional computing tech-
nology has been driven by speed. Nevertheless, there are many applications
that have limited speed requirements, for example, if they are interacting
with an environment with its own limited rates. Conversely, these applica-
tions may benefit from other characteristics of a slower technology, such as
energy e�ciency; insensitivity to uncertainty, error, and damage; and the
ability to be reconfigured or to adapt or repair itself. Sometimes we simply
want to slow a simulated process down so we can observe it. Another con-
sideration that may supersede speed is whether the computational medium
is suited to the application: Is it organic or inorganic? Living or nonliving?
Chemical, optical, or electrical?

A second requirement is the ability to implement the transducers required
for the application. Although computation is theoretically independent of its
physical embodiment, its inputs and outputs are not, and some conversions
to and from a computational medium may be easier than others. For exam-
ple, if the inputs and outputs to a computation are chemical, then chemical
or molecular computation may permit simpler transducers than electronic
computation. Also, if the system to be controlled is biological, then some
form of biological computation may suit it best.

Finally, a physical realization should have the accuracy, stability, control-
lability, etc. required for the application. Fortunately, natural computation
provides many examples of useful computations that are accomplished by
realizations that are not very accurate, for example, neuronal signals have at
most about one digit of precision. Also, nature shows us how systems that
are subject to many sources of noise and error may be stabilized and thereby
accomplish their purposes.

D. SUPER-TURING VS. NON-TURING 25

D.4.c Learning to use new technologies

A key component of the vicious cycle is our extensive knowledge about de-
signing and programming digital computers. We are naturally reluctant to
abandon this investment, which pays o↵ so well, but as long as we restrict
our attention to existing methods, we will be blind to the opportunities of
new technologies. On the other hand, no one is going to invest much time
or money in technologies that we don’t know how to use. How can we break
the cycle?

In many respects natural computation provides the best opportunity, for
nature o↵ers many examples of useful computations based on di↵erent mod-
els from digital logic. When we understand these processes in computational
terms, that is, as abstractions independent of their physical realizations in
nature, we can begin to see how to apply them to our own computational
needs and how to realize them in alternative physical processes. As examples
we may take information processing and control in the brain, and emergent
self-organization in animal societies, both of which have been applied already
to a variety of computational problems (e.g., artificial neural networks, ge-
netic algorithms, ant colony optimization). But there is much more that we
can learn from these and other natural computation systems, and we have not
made much progress in developing computers better suited to them. More
generally we need to increase our understanding of computation in nature and
keep our eyes open for physical processes with useful mathematical structure
(Calude et al., 1998; Calude & Paun, 2001). Therefore, one important step
toward a more broadly based computer technology will be a knowledge-base
of well-matched computational methods and physical realizations.

Computation in nature gives us many examples of the matching of physi-
cal processes to the needs of natural computation, and so we may learn valu-
able lessons from nature. First, we may apply the actual natural processes as
realizations of our artificial systems, for example using biological neurons or
populations of microorganisms for computation. Second, by understanding
the formal structure of these computational systems in nature, we may realize
them in alternative physical systems with the same abstract structure. For
example, neural computation or insect colony-like self-organization might be
realized in an optical system.

26 CHAPTER I. INTRODUCTION

D.4.d General-purpose computation

An important lesson learned from digital computer technology is the value
of programmable general-purpose computers, both for prototyping special-
purpose computers as well as for use in production systems. Therefore to
make better use of an expanded range of computational methodologies and
technologies, it will useful to have general-purpose computers in which the
computational process is controlled by easily modifiable parameters. That
is, we will want generic computers capable of a wide range of specific compu-
tations under the control of an easily modifiable representation. As has been
the case for digital computers, the availability of such general-purpose com-
puters will accelerate the development and application of new computational
models and technologies.

We must be careful, however, lest we fall into the “Turing Trap,” which is
to assume that the notion of universal computation found in Turing machine
theory is the appropriate notion in all frames of relevance. The criteria of uni-
versal computation defined by Turing and his contemporaries was appropriate
for their purposes, that is, studying e↵ective calculability and derivability in
formal mathematics. For them, all that mattered was whether a result was
obtainable in a finite number of atomic operations and using a finite number
of discrete units of space. Two machines, for example a particular Turing
machine and a programmed universal Turing machine, were considered to
be of the same power if they computed the same function by these criteria.
Notions of equivalence and reducibility in contemporary complexity theory
are not much di↵erent.

It is obvious that there are many important uses of computers, such as
real-time control applications, for which this notion of universality is irrel-
evant. In some of these applications, one computer can be said to emulate
another only if it does so at the same speed. In other cases, a general-purpose
computer may be required to emulate a particular computer with at most a
fixed extra amount of a computational resource, such as storage space. The
point is that in the full range of computer applications, in particular in nat-
ural computation, there may be considerably di↵erent criteria of equivalence
than computing the same mathematical function. Therefore, in any partic-
ular application area, we must consider in what respects the programmed
general-purpose computer must behave the same as the computer it is em-
ulating, and in what respects it may behave di↵erently, and by how much.
That is, each notion of universality comes with a frame of relevance, and

D. SUPER-TURING VS. NON-TURING 27

we must uncover and explicate the frame of relevance appropriate to our
application area.

There has been limited work on general-purpose computers in the non-
Turing context. For example, theoretical analysis of general-purpose analog
computation goes back to Claude Shannon in 1941, with more recent work
by Pour-El, Lipshitz, and Rubel (Pour-El, 1974b; Lipshitz & Rubel, 1987;
Rubel, 1993; Shannon, 1941, 1993). In the area of neural networks we have
several theorems based on Sprecher’s improvement of the Kolmogorov super-
position theorem (Sprecher, 1965), which defines one notion of universality for
feed-forward neural networks, although perhaps not a very useful one, and
there are several “universal approximation theorems” for neural networks
and related computational models (Haykin, 2008). Also, there are some
CT-relative universality results for molecular computation (Calude & Paun,
2001) and for computation in nonlinear media (Adamatzky, 2001). Finally,
we have done some work on general-purpose field computers (MacLennan,
1987, 1990, 1999, 2009a) and on general-purpose computation over second-
countable metric spaces (which includes both analog and digital computa-
tion) (MacLennan, 2010). In any case, much more work needs to be done,
especially towards articulating the relation between notions of universality
and their frames of relevance.

It is worth remarking that these new types of general-purpose computers
might not be programmed with anything that looks like an ordinary program,
that is, a textual description of rules of operation. For example, a guiding
image, such as a potential surface, might be used to govern a gradient descent
process or even a nondeterministic continuous process (MacLennan, 1995,
2004). We are, indeed, quite far from universal Turing machines and the
associated notions of programs and computation, but non-Turing models are
often more relevant in natural computation and other kinds of unconventional
computation.

D.5 Conclusions

The historical roots of Church-Turing computation remind us that the the-
ory exists in a frame of relevance, which is not well suited to post-Moore’s
Law unconventional computation. Therefore we need to supplement it with
new models based on di↵erent assumptions and suited to answering di↵er-
ent questions. Central issues include real-time response, generality, flexibil-
ity, adaptability, and robustness in the presence of noise, uncertainty, error,

28 CHAPTER I. INTRODUCTION

and damage. Once we understand computation in a broader sense than the
Church-Turing model, we begin to see new possibilities for using physical pro-
cesses to achieve our computational goals. These possibilities will increase
in importance as we approach the limits of electronic binary logic as a ba-
sis for computation, and they will also help us to understand computational
processes in nature.

