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B.2 Mechanical and thermal modes

This lecture is based primarily on Edward Fredkin and Tommaso To↵oli’s
“Conservative logic” (Fredkin & To↵oli, 1982).

¶1. We need to understand in more detail the reason for the increase of
entropy and its relation to reversibility and irreversibility.

¶2. Systems can be classified by their size and completeness of specification:

specification: complete incomplete
size: ⇠ 1 ⇠ 100 ⇠ 1023

laws: dynamical statistical thermodynamical
reversible: yes no no

¶3. Dynamical system: Some systems with a relatively small number of
particles or degrees of freedom can be completely specified.
E.g., 6 DoF for each particle (x, y, z, px, py, pz).

¶4. That is, we can prepare an individual system in an initial state and
expect that it will behave according to the dynamical laws that describe
it.

¶5. Think of billiard balls or pucks on a frictionless surface, or electrons
moving through an electric or magnetic field.

¶6. So far as we know, the laws of physics at this level (classical or quantum)
are reversible.

¶7. Statistical system: If there are a large number of particles with many
degrees of freedom (several orders of magnitude), then it is impractical
to specify the system completely.

¶8. Small errors in the initial state will have a larger e↵ect, due to complex
interaction of the particles. Also, there are small e↵ects from interac-
tion with the environment.

¶9. Therefore we must resort to statistical laws.

¶10. They don’t tell us how an individual system will behave (there are too
many sources of variability), but they tell us how ensembles of similar
systems (or preparations) behave.
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¶11. We can talk about the average behavior of such systems, but we also
have to consider the variance, because unlikely outcomes are not im-
possible.
For example, tossing 10 coins has a probability of 1/1024 of turning up
all heads.

¶12. Statistical laws are in general irreversible (because there are many ways
to get to the same state).

¶13. Thermodynamical system: Macroscopic systems have a very large
number of particles (⇠ 1023) and a correspondingly large number of
DoF. “Avogadro scale” numbers.

¶14. It is important to grasp how truly enormous these numbers are; in
comparison (Tong, 2012, p. 37):
# grains of sand on all beaches ⇡ 1018

# stars in our galaxy ⇡ 1011

# stars in the visible universe ⇡ 1022

but # water molecules in a cup of tea ⇡ 1023.

¶15. Obviously such systems cannot be completely specified (we cannot de-
scribe the initial state and trajectory of every atom).

¶16. We can derive statistical laws, but in these cases most macrostates
become so improbable that they are virtually impossible: Example:
the cream unmixing from your co↵ee.
The central limit theorem shows that the variance decreases with n.

¶17. In the thermodynamic limit, the likely is inevitable, and the unlikely is
impossible.

¶18. In these cases, thermodynamical laws describe the virtually determin-
istic (but irreversible) dynamics of the system.

¶19. Mechanical vs. thermal modes: Sometimes in a macroscopic sys-
tem we can separate a small number of mechanical modes (DoF) from
the thermal modes.

“Mechanical” includes “electric, magnetic, chemical, etc. degrees of
freedom.”
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¶20. The mechanical modes are strongly coupled to each other but weakly
coupled to the thermal modes.
(e.g., bullet, billiard ball)

¶21. Thus the mechanical modes can be treated exactly or approximately
independently of the thermal modes.

¶22. Conservative mechanisms: In the ideal case the mechanical modes
are completely decoupled from the thermal modes, and so the mechan-
ical modes can be treated as an isolated (and reversible) dynamical
system.

¶23. The energy of the mechanical modes (once initialized) is independent
of the energy (⇠ kT ) of the thermal modes.

¶24. The mechanical modes are conservative; they don’t dissipate any en-
ergy.

¶25. This is the approach of reversible computing.

¶26. Damped mechanisms: Suppose we want irreversible mechanical modes,
e.g., for implementing irreversible logic.

¶27. The physics is reversible, but the information lost by the mechanical
modes cannot simply disappear; it must be transferred to the thermal
modes. This is damping.
Information in the mechanical modes, where it is accessible and usable,
is transferred to the thermal modes, where it is inaccessible and unus-
able. Thermalization of information. This is the transfer of physical
information from accessible DoF to inaccessible DoF.

¶28. But the transfer is bidirectional, so noise will flow from the thermal
modes back to the mechanical modes, making the system nondeter-
ministic.

¶29. “If we know where the damping comes from, it turns out that that is
also the source of the fluctuations” [Feynman, 1963].

Think of a bullet ricocheting o↵ a flexible wall filled with sand. It
dissipates energy into the sand and also acquires noise in its trajectory
(see Fig. II.6).
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Figure II.6: Complementary relation of damping and fluctuations.

¶30. To avoid nondeterminacy, the information may be encoded redundantly
so that the noise can be filtered out.

I.e., signal is encoded in multiple mechanical modes, on which we take
a majority vote or an average.

¶31. The signal can be encoded with energy much greater than any one of
the thermal modes, E � kT , to bias the energy flow from mechanical
to thermal preferring dissipation to noise).

¶32. Signal regeneration: Free energy must refresh the mechanical modes
and heat must be flushed from the thermal modes.

¶33. “[I]mperfect knowledge of the dynamical laws leads to uncertainties in
the behavior of a system comparable to those arising from imperfect
knowledge of its initial conditions. . . Thus, the same regenerative pro-
cesses which help overcome thermal noise also permit reliable operation
in spite of substantial fabrication tolerances.”

¶34. Damped mechanisms have proved to be very successful, but they are
inherently ine�cient.

¶35. “In a damped circuit, the rate of heat generation is proportional to the
number of computing elements, and thus approximately to the useful
volume; on the other hand, the rate of heat removal is only proportional
to the free surface of the circuit. As a consequence, computing circuits
using damped mechanisms can grow arbitrarily large in two dimensions
only, thus precluding the much tighter packing that would be possible
in three dimensions.”
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¶36. Decoherence: In an extreme case (force of impact > binding forces),
a signal’s interacting with the environment might cause it to lose its
coherence (the correlation of its constituent DoFs, such as the correla-
tion between the positions and momenta of its particles).
The information implicit in the mechanical modes is lost into the ther-
mal modes.


