124

CHAPTER III. QUANTUM COMPUTATION

Figure I11.11: Diagram for swap (from NC).

C.3 Quantum circuits

qL.

Q.

qs.

q“.

qs.

96.

q.
qs.

19.

Quantum circuit: A quantum circuit is a sequential series of quantum
transformations on a quantum register.

The inputs are usually computational basis states (all |0) unless stated
otherwise).

Quantum circuit diagrams are drawn with time going from left to right,
with the quantum gates crossing one or more “wires” (qubits) as ap-
propriate.

It represents a sequence of unitary operations on a quantum register
rather than physical wires.

Unique features: Acyclic: loops (feedback) are not allowed. You can
apply transforms repeatedly, however.

FAN-IN (equivalent to OR) is not allowed, since it it not reversible or
unitary.

FAN-OUT is not allowed, because it would violate the No-cloning The-
orem.

(N.B.: This does not contradict the universality of the Toffoli or Fred-
kin gates, which are universal only with respect to classical states.)

CNOT: Fig. II1.9 (right) shows the symbol for CNOT and its effect.

Swap: The swap operation is defined |zy) — |yx), or explicitly

> lyfayl.

T,ye2

We can put three CNOTSs in series to swap two qubits (Exer. I11.29).
It has a special symbol as shown in Fig. ITI.11.

C. QUANTUM INFORMATION 125

U

Figure 1.8. Controlled-U gate.

Figure I11.12: Diagram for controlled-U (from NC).

q10.

q11.

q12.

q13.
q14.

q15.

Controlled-U: In general, any unitary operator (on any number of
qubits) can be controlled (see Fig. II1.12). If the control bit is 0, it
does nothing, otherwise it does U.

This is implemented by |0X0| ® I + |1}1| ® U.
Effectively, the operators are entangled.

Example: Suppose the control bit is in superposition, |x) = a|0)+b|1).

(|0X0|®]+|1X1|®U)|X> ¥)

= (00l ® I + [1{1] © U)(al0) + b[1)) @ |¢)

= [0X0[(al0) +b[1)) @ I]¢h) + [1(1](al0) + b[1)) © Ul4)
= al0) @ |¢) +b[1) @ Ul)

= al0,9) 4+ b|1,U).

We have a superposition of entangled outputs.
Recall that CNOT = controlled X.

Conditional or controlled transformation: If U, and U; are uni-
tary operators, then we can make the choice between them conditional
on a control bit as follows:

10X0] ® Up + [1X1] @ Uy.

For example,
CNOT = |0X0| ® I + |1)1| ® X. (IT1.17)

126 CHAPTER III. QUANTUM COMPUTATION

In Out

00) | (00) * 11)/v/Z = 7o) —

oy | gy +nopva=iay L

10) | (00} — [11)/vZ = [3u) |Bay)
1) | (01) —[10))/v2 = |Bur) Y

Figure II1.13: Quantum circuit for generating Bell states. [from NC fig. 1.12]

) —, =

Figure I11.14: Symbol for measurement of a quantum state (from NC).

€16. Other special gates: The symbol for the CCNOT gate is show in
Fig. I11.10,
or with e for top two connections and & for bottom, representing
CCNOT|z,y, z) = |z,y,zy ® 2),
or put “CCNoOT” in a box.

€17. Other operations may be shown by putting a letter or symbol in a box,
for example “H” for the Hadamard gate.

€18. H can be used to generate Bell states (Exer. I111.28):

CNOT(H @ I)|zy) = |Buy)- (II1.18)

€19. The circuit for generating Bell states (Eq. I11.18) is shown in Fig. T11.13.

920. Measurement: It’s also convenient to have a symbol for quantum
state measurement, such as Fig. I11.14.

C. QUANTUM INFORMATION 127

©) le)
|z) |z)
y) y)
|0) |s)

|0))

Figure I11.15: Quantum circuit for 1-bit full adder [from IQC]. “x and y are
the data bits, s is their sum (modulo 2), ¢ is the incoming carry bit, and ¢
is the new carry bit.”

X —/———> X > —-> X

o, 9(x) 9(x), .o |

| 0 ® ot 0|

PR > > —>

| fix) CNOT f(x) |
y—— d - > yor(x)

! y yef(x) i

B . e =~] |

Us

Figure IT1.16: Quantum gate array for reversible quantum computation.

C.4 Quantum gate arrays

€1. Full adder: Fig. II1.15 shows a quantum circuit for a 1-bit full adder.

92. As we will see (Sec. C.7), it is possible to construct reversible quantum
gates for any classically computable function. In particular the Fredkin
and Toffoli gates are universal.

3. Reversibility: Because quantum computation is a unitary operator,
it must be reversible.
You know that an irreversible computation z — f(x) can be embedded
in a reversible computation (x,c) — (g(x), f(z)), where ¢ are suitable
constants and g(x) represents the garbage bits.

128

905.

1.

q7.

98.

9.

910

q11

q12

CHAPTER III. QUANTUM COMPUTATION

. Note that throwing away the garbage bits (dumping them in the en-
vironment) will collapse the state (equivalent to measurement) by en-
tangling them in the many degrees of freedom of the environment.

Since NOT is reversible, each 1 bit in ¢ can be replaced by a 0 bit
followed by a NOT, so we need only consider (z,0) — (g(z), f(z)).
See Fig. 111.16.

The garbage must be produced in a standard state independent of x,
“because garbage bits whose value depends upon z will in general de-
stroy the interference properties crucial to quantum computation.”

Uncomputation: This is accomplished by uncomputing.
Specifically, perform the computation on four registers (data, workspace,
result, target):

(2,0,0,y) = (z,9(2), f(2),y).
Notice that = and y (data and target) are passed through.

Now use CNOTSs to compute y & f(z), where @ represents bitwise
exclusive-or, in the fourth register:

(2,0,0,9) = (2, 9(x), f(x),y @ f(2)).

Now we uncompute f, but since the data and target registers are passed
through, we get (z,0,0,y & f(z)).
Ignoring the result and workspace registers, we write

(z,y) = (z,y ® f(z)).

. Quantum gate array: Therefore, for any computable f : 2™ — 2™
there is a reversible quantum gate array Uy : H™" — H™ ™ such that
for x € 2™ and y € 2",

Uplz,y) = o,y © f(x)),
See Fig. 111.17.

. The first m qubits are called the data register and the last n are called
the target register.

. In particular, Uy|z,0) = |z, f(z)).

C. QUANTUM INFORMATION 129

r) — — [7)

ly) — — |y @ f(x))

Figure I11.17: Computation of function by quantum gate array [from IQC].

C.5 Quantum parallelism

q1.

Q.

qs.

q4.

qs.

Since Uy is linear, if it is applied to a superposition of bit strings, it will
produce a superposition of the results of applying f to them in parallel
(i.e., in the same time it takes to compute it on one vector):

Ur(erxy + coXg + -+ - + opxi) = alUpxy + cUpxg + -+ - + ¢ Upxy,.

For example,

V3 1 V3 1
Uy (7|X1> + §\X2> ®10) = 7|X17 f(x1)) + §|X2, f(x2)).
The amplitude of a result y will be the sum of the amplitudes of all x
such that y = f(z).

Quantum parallelism: If we apply Uy to a superposition of all possi-
ble 2™ inputs, it will compute a superposition of all the corresponding
outputs in parallel (i.e., in the same time as required for one function
evaluation)!

The Walsh-Hadamard transformation can be used to produce this su-
perposition of all possible inputs:

Winl00...0) = ——(]00...0)+[00...1) +---+[11...1))

130 CHAPTER III. QUANTUM COMPUTATION
1 2m—1
2m =0

In the last line we are obviously interpreting the bit strings as natural
numbers.

6. Hence,
1 2m—1 1 2m—1 1 2m_1
UWp|0) =Us | — z,0) | = — Uflz,0) = — |z, f(x)).

q7. A single circuit does all 2™ computations simultaneously!

€8. “Note that since n qubits enable working simultaneously with 2" states,
quantum parallelism circumvents the time/space trade-off of classical
parallelism through its ability to provide an exponential amount of
computational space in a linear amount of physical space.” [IQC]|

9. If we measure the input bits, we will get a random value, and the state
will be projected into a superposition of the outputs for the inputs we
measured.

€10. If we measure an output bit, we will get a value probabilistically, and a
superposition of all the inputs that can produce the measured output.

€11. Neither of the above is especially useful, so most quantum algorithms
transform the state in such a way that the values of interest have a
high probability of being measured.

€12. The other thing we can do is extract common properties of all values

of f(x).

€13. Both of these require different programming techniques than classical
computing.

