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CHAPTER III. QUANTUM COMPUTATION
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Figure I11.22: Quantum circuit for Deutsch algorithm. [fig. from NC]|
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This is a simplified version of Deutsch’s original algorithm, which shows
how it is possible to extract global information about a function by
using quantum parallelism and interference (Fig. I11.22).5

Suppose we have a function f:2 — 2, as in Sec. C.5.

The goal is to determine whether f(0) = f(1) with a single function
evaluation. This is not a very interesting problem (since there are
only four such functions), but it is a warmup for the Deutsch-Jozsa
algorithm.

It could be expensive to decide on a classical computer. For example,
suppose f(0) = the millionth bit of 7 and f(1) = the millionth bit of
e. Then the problem is to decide if the millionth bits of 7 and e are
the same.

It is mathematically simple, but computationally complex.

Initial state: Begin with the qubits |¢)y) = |01).

5This is the 1998 improvement by Cleve et al. to Deutsch’s 1985 algorithm (Nielsen &
Chuang, 2010, p. 59).
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Superposition: Transform it to a pair of superpositions

o) = =0+ 1) @ =(0) = 1) = |+ (2

V2 V2

by two tensored Hadamard gates.
Recall H|0) = —(]0) +[1)) = |+) and H[1) = J5(0) = [1)) = |-).

Function application: Next apply Uy to 1) = |+ —).
Note Uy|z)[0) = [2)|[0® f(2)) = |x)|f(x)).
Also note Ug|z)|1) = [2)|[1 & f(x)) = |x)[~f(2)).

Therefore, expand Eq. I11.21 and apply Uy:

|¢2> = Uf|¢1>
1 1
= Uy EOOHM)@E(M_“))

= S [0100) ~ UyJo1) + Uy[10) — Uy 11)]
= 210, £(O) — [0, (0)) + 1, (1)) ~ |1, ~F(1)]
There are two cases: f(0) = f(1) and f(0) # f(1).

Equal (constant function): If f(0) = f(1), then

v) = 3110, F0)) — 10,~4(0)) +[1, £(0)) ~ [1,~£(O)}]
= SHOM(1F() = [~FO)) + 1(1£(0)) — =7 (0)
= 5 000) +[)FO) ~ 1-FO)

:i%@ﬂmm%ﬂﬁ
= |+ -).

The last line applies because global phase (including +) doesn’t matter.



142

q11.

q12.

q13.

q14.

q15.

q16.

CHAPTER III. QUANTUM COMPUTATION

Unequal (balanced function): If f(0) # f(1), then
v2) = %HO, £(0)) =10, =£(0)) + |1, =f£(0)) — |1, £(0))]
= %[!0>(\f(0)> = [=f(0))) + 1) ([=f(0)) = [£(0)))]
= %[|0>(|f(0)> = [=f(0))) = [1)(1£(0)) = [=f(0)))]
= %(\O> — D)) £(0)) = [=(0)))

1
= £5(0) = 1)(|0) = 1))
= |--)
Clearly we can discriminate between the two cases by measuring the
first qubit in the sign basis.

Measurement: Therefore we can determine whether f(0) = f(1) or
not by measuring the first bit of |¢5) in the sign basis, which we can
do with the Hadamard gate (recall H|+) = |0) and H|—) = |1)):

[3) = (H @1)|b)
{i|0>|—>, if £(0) = f(1)
+[1)[=), if f(0) # f(1)
= £[f(0) @ f(1)]-).

Notice that the information is in the data register, not the result regis-
ter. This technique is called phase kick-back (i.e., kicked back into the
phase of the data register).

Therefore we can determine whether or not f(0) = f(1) with a single
evaluation of f.
(This is very strange!)

In effect, we are evaluating f on a superposition of |0) and |1) and
determining how the results interfere with each other. As a result we
get a definite (not probabilistic) determination of a global property
with a single evaluation.

This is a clear example where a quantum computer can do something
faster than a classical computer.
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Figure I11.23: Quantum circuit for Deutsch-Jozsa algorithm. [fig. from NC]
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However, note that Uy has to uncompute f, which takes as much time
as computing it, but we will see other cases (Deutsch-Jozsa) where the
speedup is much more than 2x.

D.1.b DEUTSCH-JOZSA ALGORITHM

q1.
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The Deutsch-Jozsa algorithm is a generalization of the Deutsch algo-
rithm to n bits; they published it in 1992; this is an improved version
(Nielsen & Chuang, 2010, p. 59).

The problem: Suppose we are given an unknown function f : 2" — 2
in the form of a unitary transform Uy € L(H"T, H) (Fig. 111.23).

We are told only that f is either constant or balanced, which means
that it is 0 on half its domain and 1 on the other half. Our task is to
determine into which class a given f falls.

Classical: Consider first the classical situation. We can try different
input bit strings x.

We might (if we're lucky) discover after the second query of f that it
is not constant.

But we might require as many as 2" /241 queries to answer the question.
So we're facing O(2"~1) function evaluations.

Initial state: As in the Deutsch algorithm, prepare the initial state

[¢0) = 10)"[1).
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Superposition: Use the Walsh-Hadamard transformation to create a
superposition of all possible inputs:

[¢1) = (H®" @ H)|tho) = Z\/—I

xe2m

Claim: We will show that U;|x, —) = (=)/®|x)|-), where (—)" is an
abbreviation for (—1)".

From the definition of |—) and Uy, Uy|x, —) = |x>\%(|f(x)> —|=f(x))).

Since f(x) € 2, (/) ~ [~f(x))) = |- if f(x) = 0, and it = —| )

if f(x) =
This establishes the claim.

Function application: Since Uf|x,y) = |x,y @ f(x)), you can see
that:

|th2) = Uylihn) *)|x, —).
2 £l };L\/—

The top n lines contain a superposition of the 2" simultaneous eval-
uations of f. To see how we can make use of this information, let’s
consider their state in more detail.

For a single bit you can show (exercise!):

Hla) = 3 —=()"2)

z€2
(This is just another way of writing H|0) = \%(|O> + 1)) and H|1) =
1(0) — 1)).)

Therefore, for the n bits:

f{®n|$1,I2,...,$n> _ 2{: (_Jxlsz“+wnzn 217227---,Zn>

= > ()2, (I1L.22)

where x - z is the bitwise inner product. (It doesn’t matter if you do
addition or @ since only the parity of the result is significant.)
Remember this formula!
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Combining this and the result in 910,

[03) = (H®" @ I)[ihy) = ZZ =) z) ).

ze2" x€2"

Measurement: Consider the first n qubits and the amplitude of one
particular basis state, z = [0)®".

Its amplitude is erzn (=),

Constant function: If the function is constant, then all the exponents
of —1 will be the same (either all 0 or all 1), and so the amplitude will
be £1.

Therefore all the other amplitudes are 0 and any measurement must
yield 0 for all the bits (since only |0)®" has nonzero amplitude).

Balanced function: If the function is not constant then (ex hypothesi)
it is balanced.

But more specifically, if it is balanced, then there must be an equal
number of +1 and —1 contributions to the amplitude of |0)*", so its
amplitude is 0.

Therefore, when we measure the state, at least one qubit must be
nonzero (since the all-Os state has amplitude 0).

Good and bad news: The good news is that with one quantum
function evaluation we have got a result that would require between 2
and O(2"71) classical function evaluations (exponential speedup).
The bad news is that the algorithm has no known applications!

Even if it were useful, the problem could be solved probabilistically on
a classical computer with only a few evaluations of f.

However, it illustrates principles of quantum computing that can be
used in more useful algorithms.



