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D.3 Shor

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.
— Jennifer and Peter Shor6

These lectures primarily follow Eleanor Rie↵el and Wolfgang Polak’s “An
Introduction to Quantum Computing for Non-Physicists” (Rie↵el & Polak,
2000).

¶1. RSA: The widely used RSA public-key cryptography system is based
on the di�culty of factoring large numbers.

¶2. Complexity: The best classical algorithms are exponential in the size
of the input, m = lnM .
Specifically, the best current (2006) algorithm (the number field sieve
algorithm) runs in time eO(m1/3

ln

2/3 m).

¶3. Shor’s algorithm is bounded error-probability quantum polynomial time
(BQP), specifically, O(m3).

¶4. Period finding: Shor’s algorithm reduces factoring to finding the
period of a function.

¶5. Motivation for Period-finding: The connection between factoring
and period finding can be understood as follows:
Suppose you are trying to factor M .
Suppose you can find x such that x2 = 1 (mod M).
Then x2 � 1 = 0 (mod M).
Therefore (x+ 1)(x � 1) = 0 (mod M).
Therefore both x + 1 and x � 1 have common factors with M (except
in the trivial case x = 1, and so long as neither is a multiple of M).

¶6. Pick an a that is coprime (relatively prime) to M .
If ar = 1 (mod M) and r happens to be even, we’re done (since we can
find a factor of M as in previous topic).

6NC 216.
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(The smallest such r is the order of a.)
This r is the period of ax, since ax+r = axar = ax (mod M).

¶7. Shor’s algorithm was invented in 1994, inspired by Simon’s algorithm.

¶8. QFT: Like the classical Fourier transform, the Quantum Fourier Trans-
form puts all the amplitude of the function into multiples of the fre-
quency (reciprocal period).

¶9. Measuring the state yields the period with high probability.

D.3.a Quantum Fourier transform

¶1. Let f be a function defined on [0, 2⇡).
We know it can be represented as a Fourier series,

f(x) =
a

0

2
+

1X
k=1

(ak cos kx+ bk sin kx) =
A

0

2
+

1X
k=1

Ak cos(kx+ �k),

where k = 0, 1, 2, . . . represents the overtone series (natural number
multiples of the fundamental frequency).

¶2. Ciscoid basis: You know also that it can be represented in the ciscoid

(sine and cosine) basis, uk(x)
def

= cis(�kx) = e�ikx. (The “�” sign is
irrelevant, but will be convenient later.)
f(x) =

P1
k=�1 f̂k cis(�kx).

¶3. The Fourier coe�cients are given by f̂k = huk | fi =
R

2⇡

0

eikxf(x)dx.
They give the amplitude and phase of the component signals uk.

¶4. DFT: For the discrete Fourier transform we suppose that f is repre-

sented by N samples, fj
def

= f(xj), where xj = 2⇡ j
N
, with j 2 N

def

=
{0, 1, . . . , N � 1}. Let f = (f

0

, . . . , fN�1

)T.
Note that the xj are the 1/N segments of a circle.

¶5. Discrete basis: Likewise each of the basis functions is represented by
N samples:

ukj
def

= cis(�kxj) = e�2⇡ikj/N , j 2 N.

Let uk = (uk,0, . . . , uk,N�1

)T.
In e�2⇡ikj/N , note that 2⇡i represents a full cycle, k is the overtone, and
j/N represents the fraction of a full cycle.
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¶6. Roots of unity: Notice that N samples of the fundamental period
correspond to the N primitive N th-roots of unity, that is, !j where (for
a particular N) ! = e2⇡i/N .
Hence, ukj = !�kj. That is, uk = (!�k·0,!�k·1 . . . ,!�k·(N�1))T.

¶7. Orthonormality: It is easy to show that the vectors uk are orthogo-
nal, and in fact that uk/

p
N are ON (exercise).

¶8. Therefore, f can be represented by a Fourier series,

f =
1p
N

X
k2N

f̂kuk =
1

N

X
k2N

(u†
kf)uk.

¶9. Discrete Fourier transform: Define the discrete Fourier transform
of the vector f , f̂ = Ff , to be the vector of Fourier coe�cients, f̂k =
u†

kf/
p
N .

¶10. Determine F as follows:

f̂ =

0BBB@
f̂

0

f̂
1

...
f̂N�1

1CCCA =
1p
N

0BBB@
u†

0

f
u†

1

f
...

u†
N�1

f

1CCCA =
1p
N

0BBB@
u†

0

u†
1

...
u†

N�1

1CCCA f .

¶11. Therefore let

F
def

=
1p
N

0BBB@
u†

0

u†
1

...
u†

N�1

1CCCA =
1p
N

0BBBBB@
!0·0 !0·1 · · · !0·(N�1)

!1·0 !1·1 · · · !1·(N�1)

!2·0 !2·1 · · · !2·(N�1)

...
...

. . .
...

!(N�1)·0 !(N�1)·1 · · · !(N�1)·(N�1)

1CCCCCA .

That is, Fkj = ukj/
p
N = !kj/

p
N for k, j 2 N.

¶12. Note that the “�” signs in the complex exponentials were eliminated
by the conjugate transpose.

¶13. Unitary: F is unitary transformation (exercise).
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¶14. FFT: The FFT reduces the number of operations required from O(N2)
to O(N logN).
It does this with a recursive algorithm that avoids recomputing values.
However, it is restricted to N = 2n.

¶15. QFT: The QFT is even faster, O(log2 N), that is, O(n2).
However, because the spectrum is encoded in the amplitudes of the
state, we cannot get them all.
It too is restricted to N = 2n.

¶16. The QFT transforms the amplitudes of a quantum state:

U
QFT

X
j2N

fj|ji =
X
k2N

f̂k|ki,

where f̂
def

= Ff .

¶17. Suppose f has period r, and suppose that r | N .
Then all the amplitude of f̂ should be at multiples of its fundamental
frequency, N/r.

¶18. If r 6 | N , then the amplitude will be concentrated near multiples of
N/r.
The approximation is improved by using larger n.

¶19. The QFT can be implemented with n(n+ 1)/2 gates of two types:
(1) One is Hj, the Hadamard transformation of the jth qubit.
(2) The other is a controlled phase-shift. Specifically Sj,k uses qubit xj

to control whether it does a particular phase shift on the |1i component
of qubit xk.
That is, Sj,k|xjxki 7! |xjx

0
ki is defined by

Sj,k
def

= |00ih00| + |01ih01| + |10ih10| + ei✓
k�j |11ih11|,

where ✓k�j = ⇡/2k�j.
That is, the phase shift depends on the indices j and k.
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¶20. It can be shown that the QFT can be defined:7

U
QFT

=
n�1Y
j=0

Hj

n�1Y
k=j+1

Sj,k.

This is O(n2) gates.

D.3.b Shor’s algorithm

¶1. Shor’s algorithm depends on many results from number theory, which
are outside of the scope of this course. Since this is not a course in
cryptography or number theory, I will just illustrate the ideas.
Suppose we are factoring M (and M = 21 will be used for concrete
examples).

Let m
def

= dlgMe = 5 in the case M = 21.

¶2. Step 1: Pick a random number a < M . If a and M are not coprime
(relatively prime), we are done.
(Euclid’s algorithm is O(m2) = O(log2 M).)

¶3. Example: Suppose we pick a = 11, which is relatively prime with 21.

¶4. Modular exponentiation: Let g(x)
def

= ax (mod M), for x 2 M
def

=
{0, 1, . . . ,M � 1}.

¶5. This takes O(m3) gates. It’s the most complex part of the algorithm!
(Reversible circuits typically use m3 gates for m qubits.)

¶6. Ex.: In our case, g(x) = 11x (mod 21), so

g(x) = 1, 11, 16, 8, 4, 2,| {z }
period

1, 11, 16, 8, 4, . . .

¶7. In order to get a good QFT approximation, pick n such that M2 
2n < 2M2. Let N = 2n.
Alternately, 2 lgM  n < 2 lgM + 1, that is, roughly twice as many

7See Rie↵el & Polak (2000) for this, with a detailed explanation in Nielsen & Chuang
(2010, §5.1, pp. 517–21).
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qubits as in M .
Note that although the number of samples is N = 2n, we need only n
qubits (thanks to the tensor product).

¶8. Ex.: For M = 21 we pick n = 9 for N = 512 since 441  512 < 882.
Note m = 5.

¶9. Step 2 (quantum parallelism): Apply Ug to the superposition

| 
0

i def

= H⌦n|0i⌦n =
1p
N

X
x2N

|xi

to get

| 
1

i def

= Ug| 0

i|0i⌦m =
1p
N

X
x2N

|x, g(x)i.

¶10. Ex.: Note that 14 qubits are required [n = 9 for x and m = 5 for g(x)].

¶11. Step 3 (measurement): The function g has a period r, which we
want to transfer to the amplitudes of the state so that we can apply
the QFT.

¶12. This is accomplished by measuring (and discarding) the result register
(as in Simon’s algorithm).
Suppose the result register collapses into state g⇤ (e.g., g⇤ = 8).
The input register will collapse into a superposition of all x such that
g(x) = g⇤. We can write it

| 
2

i def

=
1

Z
X

x2N s.t. g(x)=g⇤

|x, g⇤i = 1

Z
X
x2N

fx|x, g⇤i =
"
1

Z
X
x2N

fx|xi
#

|g⇤i,

where

fx
def

=

⇢
1, if g(x) = g⇤

0, otherwise
,

and Z def

=
p

|{x | g(x) = g⇤}| is a normalization factor.

¶13. Note that the values x for which fx 6= 0 di↵er from each other by the
period.
As in Simon’s algorithm, if we could measure two such x, we would
have useful information, but we can’t.
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Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m/r. When the period r does not divide
2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m/r, the period is easy
to extract. In this case, v = j 2m

r for some j. Most of the time j and r will be relatively

Figure III.24: Example probability distribution |fx|2 for state
Z�1

P
x2N

fx|x, 8i. In this example the period is r = 6 (e.g., at
x = 3, 9, 15, . . .). [fig. source: IQC]

¶14. Note: As it turns out, the preceding measurement of the result register
can be avoided. This is in general true for “internal” measurement
processes in quantum algorithms (Bernstein & Vazirani 1997).

¶15. Ex.: Suppose we measure the result register and get g⇤ = 8.
Fig. III.24 shows the corresponding f .

¶16. Step 4 (QFT): Apply the QFT to obtain,

| 
3

i def

= U
QFT

 
1

Z
X
x2N

fx|xi
!

=
1

Z
X
x̂2N

f̂x̂|x̂i.

(The collapsed result register |g⇤i has been omitted.)

¶17. If the period r divides N = 2n, then f̂ will be nonzero only at multiples
of the fundamental frequency N/r.
That is, the nonzero components will be |kN/ri.



156 CHAPTER III. QUANTUM COMPUTATION

26 · E. Rieffel and W. Polak

0.0

0.0012

0.0024

0.0036

0.0048

0.006

0.0072

0.0084

0.0096

0.0108

0.012

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring x when measuring the state C
P

x�X

|x, 8� obtained in Step 2, where
X = {x|211x mod 21 = 8}}

0.0

0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.17

0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m/r. When the period r does not divide
2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m/r, the period is easy
to extract. In this case, v = j 2m

r for some j. Most of the time j and r will be relatively

Figure III.25: Example probability distribution |f̂x̂|2 of the quantum Fourier
transform of f . The spectrum is concentrated near multiples of N/6 =
512/6 = 85 1/3, that is 85 1/3, 170 2/3, 256, etc. [fig. source: IQC]

¶18. If it doesn’t divide, then the amplitude will be concentrated around
these |kN/ri.

¶19. Ex.: See Fig. III.24 and Fig. III.25 for examples of the probability
distributions |fx|2 and |f̂x̂|2.

¶20. Step 5 (period extraction): Measure the state in the computational
basis.

¶21. Period a power of 2: If r | N , then the resulting state will be

v
def

= |kN/ri for some k 2 N.

¶22. Therefore k/r = v/N .

¶23. If k and r are relatively prime, as is likely, then reducing the fraction
v/N to lowest terms will produce r in the denominator.
In this case the period is discovered.

¶24. Period not a power of 2: In this case, it’s often possible to guess



D. QUANTUM ALGORITHMS 157

the period from a continued fraction expansion of v/N .8

Shor analyzes the probability.

¶25. Ex.: Suppose the measurement returns v = 427, which is not a power
of two.
This is the result of the continued fraction expansion of v/N (see IQC):

i ai pi qi ✏i
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

“which terminates with 6 = q
2

< M  q
3

. Thus, q = 6 is likely to be
the period of f .” [IQC]

¶26. Step 6 (finding a factor): (The following applies however we got the
period q in Step 5.)
If the guess q is even, then aq/2 + 1 and aq/2 � 1 are likely to have
common factors with M .
Use the Euclidean algorithm to check this.

¶27. Reason: If q is the period of g(x) = ax (modM), then aq = 1 (modM).
This is because, if q is the period, then for all x, g(x+ q) = g(x), that
is, aq+x = aqax = ax (mod M) for all x.

¶28. Therefore aq � 1 = 0 (mod M). Hence,

(aq/2 + 1)(aq/2 � 1) = 0 (mod M).

Therefore, unless one of the factors is a multiple of M (and hence = 0
mod M), one of them has a nontrivial common factor with M .

¶29. Ex.: The continued fraction gave us a guess q = 6, so with a = 11 we
should consider 113 + 1 = 1332 and 113 � 1 = 1330.
For M = 21 the Euclidean algorithm yields gcd(21, 1332) = 3 and
gcd(21, 1330) = 7.
We’ve factored 21!

8See Rie↵el & Polak (2000, App. B) for an explanation of this procedure and citations
for why it works.
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¶30. Iteration: There are several reasons that the preceding steps might
not have succeeded:
(1) The value v projected from the spectrum might not be close enough
to a multiple of N/r (¶24).
(2) In ¶23, k and r might not be relatively prime, so that the denomi-
nator is only a factor of the period, but not the period itself.
(3) In ¶28, one of the two factors turns out to be a multiple of M .
(4) In ¶26, q was odd.

¶31. In these cases, a few repetitions of the preceding steps yields a factor
of M .

D.3.c Recent progress

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.
— Volker Strassen9

This lecture is based on Erik Lucero, R. Barends, Y. Chen, J. Kelly, M.
Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner,
T. White, Y. Yin, A. N. Cleland & John M. Martinis, “Computing prime
factors with a Josephson phase qubit quantum processor.” Nature Physics
8, 719–723 (2012) doi:10.1038/nphys2385 [CPF].

¶1. In Aug. 2012 a group at UC Santa Barbara described a quantum im-
plementation of Shor’s algorithm that correctly factored 15 about 48%
of the time (50% being the theoretical success rate).
(There have been NMR hardware factorizations of 15 since 2001, but
there is some doubt if entanglement was involved.)

¶2. This is a 3-qubit compiled version of Shor’s algorithm.
“Compiled” means that the implementation of modular exponentiation
is for fixed M and a.

9NC 216.
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Figure III.26: Hardware implementation of Shor’s algorithm developed at
UCSB (2012). The Mj are quantum memory elements, B is a quantum
“bus,” and the Qj are phase qubits that can be used to implement qubit
operations between the bus and memory elements. [source: CPF]

Figure III.27: Circuit of hardware implementation of Shor’s algorithm devel-
oped at UCSB. [source: CPF]
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¶3. This case used fixed a = 4 as the coprime to M = 15.
In this case the correct period r = 2.

¶4. The device (Fig. III.26) has nine quantum devices, including four phase
qubits and five superconducing co-planar waveguide (CPW) resonators.

¶5. The four CPWs (Mj) can be used as memory elements and fifth (B)
can be used as a “bus” to mediate entangling operations.

¶6. In e↵ect the qubits Qj can be read and written.
Radiofrequency pulses in the bias coil can be used to adjust the qubit’s
frequency.
Gigahertz pulses can be used to manipulate and measure the qubit’s
state.
SQUIDs are used for one-shot readout of the qubits.

¶7. The qubits Qj can be tuned into resonance with the bus B or memory
elements Mj.

¶8. Qubit gates: The quantum processor can be used to implement the
single-qubit gates X, Y, Z,H, and the two-qubit swap (iSWAP) and
controlled-phase (C�) gates.

¶9. Entanglement: The entanglement protocol can be scaled to an arbi-
trary number of qubits.

¶10. Relaxation and dephasing times: about 200ns.

¶11. Factoring 21 by qubit recycling: The quantum factoring of 21 has
been reported.
See Martin-Lópex et al., “Experimental realization of Shor’s quantum
factoring algorithm using qubit recycling,” Nature Photonics 6, 773–6
(2012).

¶12. This procedure operates by using one qubit instead of the n qubits
in the (upper) control qubits. It does this by doing all the unitaries
associated with the lowest-order control qubit, then for the next control
qubit, updating the work register after each step, for n interations.


