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H Quantum probability in cognition

This lecture is based on Emmanuel M. Pothos and Jerome R. Busemeyer,
“Can quantum probability provide a new direction for cognitive modeling?”
Behavioral and Brain Sciences, forthcoming (henceforth, [PB]).

H.1 Theories of decision making

¶1. How do people make decisions under uncertainty? There have been
three major phases of models.

¶2. (i) Logic: From Aristotle’s time, the most common model of human
thinking has been formal logic, especially deductive logic.

¶3. The title of George Boole’s book, in which he introduced Boolean al-
gebra, was called The Laws of Thought, and that is what he supposed
it to be.

¶4. The first AI program (1956) was the Logic Theorist, and formal
deductive logic still dominates many AI systems.

¶5. Since the 1960s there has been accumulating psychological evidence
that classical logic is not a good model of everyday reasoning.

¶6. Nonmonotonic reasoning: An additional, more technical problem is
that classical logic is monotonic, that is, the body of derived theorems
can only increase. But everyday reasoning is nonmonotonic: proposi-
tions that were previously taken to be true can become false (either
because the facts have changed or an assumption has been invalidated.
As a consequence, the body of truths can shrink. Existing truths can
be nullified.

¶7. Inductive logic: An additional problem is that much of our reasoning
is inductive rather than deductive, that is, it moves from more partic-
ular premises to more general conclusions, rather than vice versa, as
deductive logic does.

¶8. But after many years of research, there really isn’t an adequate in-
ductive logic that accounts for scientific reasoning as well as everyday
generalization.
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¶9. (ii) Classical probability (CP): The most common models have
been based on CP and Bayesian inference.

¶10. Kahneman and Tversky: Amos Tversky and Daniel Kahneman
were pioneers (from the 1970s) in the study of how people actually
make decisions and judgments. (In 2002 Kahneman recieved the Nobel
Prize in Economics for this work; Tversky had already died.)

¶11. Since then many other psychologists have confirmed and extended their
findings.

¶12. Everyday human reasoning follows the laws of neither classical logic
nor classical probability theory.

¶13. “Many of these findings relate to order/context e↵ects, violations of the
law of total probability (which is fundamental to Bayesian modeling),
and failures of compositionality.” [PB]

¶14. (iii) Quantum probability (QP): Provides an alternative system
(axiomatization) of probability which has the potential to account for
these violations of CP, as we will see.

¶15. Note that QP is just a probability theory. There is no presumption that
physical quantum phenomena are significant in the brain (although
they might be).

H.2 Framework

H.2.a Questions & outcomes

¶1. Outcome space: Just as CP begins by defining a sample space, QP
begins by defining Hilbert space, which defines all possible answers that
could be produced for all possible questions (addressed by the model).

¶2. State: Corresponding to the quantum state is the cognitive state, which
you can think of as the indeterminate state of the brain before there
is a decision or determination to act in some way (such as answering a
question).

¶3. Questions and observables: Corresponding to observables in QM,
we have questions in QP. More generally, we might refer to quandries,
that is, unsettled dispositions to act.
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 (this is called Lüder’s law).  

 

It is clear that the definition of conditional probability in QP theory is analogous 

to that in CP theory, but for potential order effects in the sequential projection PAPB, 

when A and B are incompatible. 
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Figure 1. An illustration of basic processes in QP theory. In Figure 1b, all vectors are co-
planar, and the figure is a two-dimensional one. In Figure 1c, the three vectors “Happy, 
employed,” “Happy, unemployed,” and “Unhappy, employed” are all orthogonal to each 
other, so that the figure is a three-dimensional one.  (The fourth dimension, “unhappy, 
unemployed” is not shown). 
 
 

 The magnitude of a projection depends upon the angle between the corresponding 

subspaces. For example, when the angle is large, a lot of amplitude is lost between 

successive projections. As can be seen in Figure 1b, 

 

Figure III.46: “An illustration of basic processes in QP theory. In Figure
[b], all vectors are coplanar, and the figure is a two-dimensional one. In
Figure [c], the three vectors ‘Happy, employed’, ‘Happy, unemployed’, and
‘Unhappy, employed’ are all orthogonal to each other, so that the figure is
a three-dimensional one. (The fourth dimension, ‘unhappy, unemployed’ is
not shown).” [PB]

¶4. Decisions, rays, subspaces, and projectors: Corresponding to
projectors into subspaces we have decisions. Often the subspaces are
one-dimensional, that is, rays.

H.2.b Happiness example

¶1. Happiness basis: Consider asking a person whether they are happy
or not. Before asking the question, they might be in an indefinite
(superposition) state (Fig. III.46(a)):

| i = a|happyi + b|unhappyi.

It is not just that we do not know whether the person is happy or
not; rather the person “is in an indefinite state regarding happiness,
simultaneously entertaining both possibilities, but being uncommitted
to either.”
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¶2. More realistically “happy” and “unhappy” are likely to be complex
subspaces, not rays. For the sake of the example, we use a 2D outcome
space.

¶3. Asking the question is equivalent to measuring the state in the “hap-
piness basis,” which comprises two projectors P

happy

and P
unhappy

:

P
happy

= |happyihhappy|,
P

unhappy

= |unhappyihunhappy|.

¶4. The probability that the person responds “happy” is, as expected:

kP
happy

| ik2 = k|happyihhappy |  ik2 = |a|2.

¶5. Measurement (decision) collapses the indefinite state to a definite basis
state, |happyi, with probability |a|2.

¶6. Constructive: The judgment or decision is not just a “read out”; it
is constructed from the state and the question, which actively disam-
biguates the superposition state.

H.2.c Incompatibility

¶1. Compatible and incompatible questions: As in QM, questions
can be compatible or incompatible. Neils Bohr borrowed the notion of
incompatible questions from the psychologist William James.

¶2. Commutativity: Compatible questions can be asked in any order;
they commute.
Incompatible questions do not commute.

¶3. Unicity principle: In CP it is always possible to specify a joint prob-
ability distribution over the four possible pairs of answers (unicity prin-
ciple).
In QP you can do this for compatible questions, but not for incompat-
ible.
Psychologically, in the incompatible case the person cannot form a sin-
gle thought for all combinations of possible outcomes (because they are
linearly dependent).
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¶4. Context: In the incompatible case, asking the first question alters the
context of the second question, and thus a↵ects its answer.

¶5. In applying QP in psychology, we can ask whether one decison is likely
to a↵ect the other.

¶6. Employment example: Suppose we are going to ask a person two
questions, whether they are happy or not and whether they are em-
ployed or not.

¶7. It is plausible that happiness and employment are related, so we pos-
tulate a single 2D space spanned by both bases (Fig. III.46(b)).

¶8. The angle between the two bases reflects the fact that happiness is
likely to be correlated to employment.

¶9. Notice that once we get an answer regarding happiness, we will be in
an indefinite state regarding employment, and vice versa.

¶10. Suppose we ask if the subject is employed and then ask if they are
happy. The probability that they answer “yes” to both is given by:

P{employed && happy} = P{employed} ⇥ P{happy | employed}.

As in C++, “ && ” should be read “and then” (sequential “and”).

¶11. The rules of QP give the first probability: P{employed} = kP
employed

| ik2.

¶12. Asking about employment has collapsed the state, which is now

| 
employed

i = P
employed

| i
kP

employed

| ik .

¶13. The probability of a happy response is then P{happy | employed} =
kP

happy

| 
employed

ik2.

¶14. Hence the probability of the two responses is P{employed && happy} =
kP

happy

P
employed

| ik2.

¶15. Lüder’s Law: From this example, we can see that law for conditional
probability in QP, called Lüder’s Law, is:

P{A | B} =
kPAPB| ik2

kPB| ik2

=
P{B && A}

P{B} .



H. QUANTUM PROBABILITY IN COGNITION 211

¶16. Look at Fig. III.46(b). You can see that

P{happy} < P{employed && happy},

which cannot happen in CP (since P{A} � P{A ^ B} always).
The psychological interpretation would be that the subject’s conscious-
ness of being employed makes her more likely to say she is happy.
This is because happiness and employment are correlated, but this cor-
relation does not a↵ect the outcome without the prior question about
employment.

¶17. In general, P{A && B} 6= P{B && A}, which cannot happen in CP.
That is, conjunction is not commutative.

¶18. You can see

P{happy && employed} < P{employed && happy}.

This is because the subject was more uncertain about their happiness
than their employment, and therefore the state vector lost a lot of its
amplitude via its projection first onto |happyi.

¶19. “The size of such angles and the relative dimensionality of the subspaces
are the cornerstones of QP cognitive models and are determined by
the known psychology of the problem. These angles (and the initial
state vector) have a role in QP theory analogous to that of prior and
conditional distributions in Bayesian modeling.”

H.2.d Compatible questions

¶1. Fig. III.46(c) displays the case where the questions are compatible (only
three of the four basis vectors are shown).

¶2. Tensor product: In this case we have a tensor product between the
space spanned by |happyi and |unhappyi and the space spanned by
|employedi and |unemployedi.

¶3. Composite vectors: For compatible questions the states are compos-
ite vectors, e.g.,

|Hi = ⌘|happyi + ⌘0|unhappyi,



212 CHAPTER III. QUANTUM COMPUTATION

|Ei = ✏|employedi + ✏0|unemployedi,
| i = |Hi ⌦ |Ei

= ⌘✏|happyi|employedi + ⌘✏0|happyi|unemployedi
+⌘0✏|unhappyi|employedi + ⌘0✏0|unhappyi|unemployedi.

¶4. Then, for example, the joint probability

P{happy ^ employed} = |⌘✏|2 = P{happy}P{employed},
as in CP.

H.2.e Structured representations and entanglement

¶1. Structured concepts: Many concepts seem to have structured rep-
resentations, that is, components, properties, or attributes,, which are
“aligned” when concepts are compared.
Think of the variable components (fields) of a C++ class.

¶2. Tensor product spaces: Structured concepts are naturally repre-
sented in QP by tensored spaces representing the concept’s compo-
nents.

¶3. Entangled states: However QP also permits entangled (non-product)
states, such as

↵|happyi|employedi + �|unhappyi|unemployedi.

¶4. This represents a state in which happiness and employment are strongly
interdependent.
It represents a stronger degree of dependency than can be expressed
in CP. In CP you can construct a complete joint probability out of
pairwise joints, but this is not possible in QP.

H.2.f Time evolution

¶1. Markov models: Time evolution is CP is defined by “a transition
matrix (the solution to Kolmogorov’s forward equation).”
It transforms the probabilities without violating the law of total prob-
ability.

¶2. In QP amplitudes change by a unitary transformation.



H. QUANTUM PROBABILITY IN COGNITION 213
 

 

�

Ba
n
k%
Te
lle
r

Fem
inis

t

~ Ba nk%Teller

~
Fem

inist

 
Figure 2. An illustration of the QP explanation for the conjunction fallacy.  

 
 
3.2. Failures of commutativity in decision making  

We next consider failures of commutativity in decision making, whereby asking the same 

two questions in different orders can lead to changes in response (Feldman & Lynch 

1988; Schuman & Presser 1981; Tourangeau et al. 1991). Consider the questions “Is 

Clinton honest?” and “Is Gore honest?” and the same questions in a reverse order. When 

the first two questions were asked in a Gallup poll, the probabilities of answering yes for 

Clinton and Gore were 50% and 68%, respectively. The corresponding probabilities for 

asking the questions in the reverse order were, by contrast, 57% and 60% (Moore 2002). 

Such order effects are puzzling according to CP theory, because, as noted, the probability 

of saying yes to question A and then yes to question B equals  

Figure III.47: Hypothetical basis state space of the “Linda experiment.” [fig.
from PB]

H.3 Experimental evidence

H.3.a Conjunction fallacy

¶1. “Linda experiment”: In 1983 Tversky and Kahneman reported on
experiments in which subjects read a description of a hypothetical per-
son named Linda that suggested she was a feminist.
Subjects were asked to compare the probability of two statements:
“Linda is a bank teller” (extremely unlikely given Linda’s description).
“Linda is a bank teller and a feminist.”

¶2. Most concluded:

P{bank teller} < P{bank teller ^ feminist},

which violates CP.

¶3. Conjunction fallacy: This is an example of the conjunction fallacy.

¶4. Many experiments of this sort have shown that everyday reasoning
commits this fallacy.

¶5. T & K proposed that people use heuristics rather than formal CP, but
it can also be explained by QP.
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¶6. QP explanation: We suppose that the written description makes it
a priori likely that Linda is a feminist and unlikely that she is a bank
teller; these priors are depicted in Fig. III.47.
However, notice that being a feminist is largely independent of being a
bank teller.

¶7. In making a judgment like “Linda is a bank teller and a feminist” it
is supposed that it is a sequential conjunction, with the most likely
judgment evaluated first, in this case, “feminist && bank teller.”

¶8. Look at the figure. The green projection onto |feministi and then onto
|bank telleri is longer than the blue projection directly onto |bank telleri.

¶9. Projection can be thought of as an abstraction process, and so the pro-
jection of Linda onto |feministi throws away details about her (stereo-
types her, we might say), and makes it more likely that she is a bank
teller (since there is not a strong correlation between feminists and
bank tellers).

¶10. This may be compared to decoherence and loss of information in a
quantum system.

¶11. “In general, QP theory does not always predict an overestimation of
conjunction. However, given the details of the Linda problem, an
overestimation of conjunction necessarily follows. Moreover, the same
model was able to account for several related empirical findings, such
as the disjunction fallacy, event dependencies, order e↵ects, and un-
packing e↵ects. . . ”

H.3.b Failure of commutativity

¶1. “Clinton-Gore experiment”: A Gallup poll asked “Is Clinton hon-
est?” and “Is Gore honest?” Results depended on the order in which
they were asked:

order Clinton Gore
Clinton — Gore 50% 68%
Gore — Clinton 57% 60%
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The actual QP theory model developed for such failures in commutativity was 

based on the abovementioned idea, but was more general, so as to provide a parameter 

free test of the relevant empirical data (e.g., there are various specific types of order 

effects; Wang & Busemeyer, under review). 
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Figure 3. An illustration of order effects in Gallup polls.  

 

A related failure of commutativity concerns the order of assessing different pieces 

of evidence for a particular hypothesis. According to CP theory, the order in which 

evidence A and B is considered, in relation to a hypothesis H, is irrelevant, as 

 

Prob(H|A∧B)= Prob (H|B∧A). 

 

However, there have been demonstrations that, in fact,  

 

Figure III.48: Example of order e↵ects in Gallop polls. [fig. from PB]

¶2. This is also a common characteristic of everyday judgment.
It is also common in the assessment of evidence for a hypothesis.

¶3. QP explanation: The “Yes” basis vectors have a smaller angle re-
flecting an expected correlation between the answers (since Clinton
and Gore ran together).

¶4. The initial state vector is a little closer to the |Gore Yesi vector re-
flecting the assumption that Gore’s honesty is a priori more likely than
Clinton’s.
You can see this by looking at the green projection onto |Gore Yesi,
which is longer than its blue projection onto |Clinton Yesi.

¶5. Note further that the two-step blue projection onto |Clinton Yesi is
longer than the direct projection onto it.
That is, judging Gore to be honest increases the probability of also
judging Clinton honest.

H.3.c Violations of sure-thing principle

¶1. Sure-thing principle: “The sure thing principle is the expectation
that human behavior ought to conform to the law of total probability.”

¶2. In 1992 Shafir and Tversky reported experiments showing violations of
the sure-thing principle in the one-shot prisoner’s dilemma.

¶3. One-shot prisoner’s dilemma: The subject has to decide whether
to cooperate or defect, as does their opponent. Typical payo↵ matrix:
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opponent
# you cooperate defect

cooperate 3, 3 0, 5
defect 5, 0 1, 1

¶4. If you are told what your opponent is going to do, then you should
defect.
This is what subjects usually do.

¶5. If you don’t know, then the optimal strategy is still to defect.
This is the “sure thing.”

¶6. However, some subjects decide to cooperate anyway (thus violating the
sure-thing principle).

¶7. One explanation is “wishful thinking.” If you have a bias toward co-
operation, you might suppose (in the absence of evidence) that you
opponent has a similar bias.

¶8. QP explanation: Suppose | Ci and | Di are the states of knowing
that your opponent will cooperate and defect, respectively.
Suppose PC and PD are projections representing your decision to co-
operate or defect.

¶9. Known condition: Under the condition where you know what your
opponent is going to do, your probability of defecting in the two cases
is:

P{you defect} = kPD| Cik2,

P{you defect} = kPD| Dik2.

¶10. Unknown condition: In the unknown condition, we can suppose the
state is | i = 1p

2

(| Ci + | Di). Hence, the probability of you deciding
to defect is:

P{you defect} =

���� 1p
2
(PD| Ci + PD| Di)

����2

=
1

2
(h C | + h D|)P †

DPD(| Ci + | Di)

=
1

2
kPD| Cik2 +

1

2
kPD| Dik2 + h D | P †

DPD |  Ci.
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Pothos and Busemeyer (2011), whose results indicate that, as long as one subspace has a 

greater dimensionality than another, on average the transition from the lower 

dimensionality subspace to the higher dimensionality one would retain more amplitude 

than the converse transition (it has not been proved that this is always the case, but note 

that participant results with such tasks are not uniform).  
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Figure 4. Figure 4a corresponds to the similarity of Korea to China and 4b to the 
similarity of China to Korea. Projecting to a higher dimensionality subspace last (as in Figure III.49: QP model of China – (North) Korea experiment. [fig. from

PB]

¶11. The interference term h D | P †
DPD |  Ci could be positive or negative,

in the latter case decreasing the probability below unity.

H.3.d Asymmetric similarity

¶1. In 1977 Tversky showed that similarity judgments violate metric ax-
ioms, in particular, symmetry.

¶2. China-Korea experiment: For example, N. Korea was judged more
similar to China, than China was judged to be similar to N. Korea:

Sim(N. Korea,China) > Sim(China,N. Korea).

¶3. QP explanation: Concepts correspond to subspaces of various dimen-
sions, with the dimension of the subspace roughly corresponding to the
number of known properties of the concept (i.e., how much someone
knows about it).
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¶4. Similarity: The judgment of the similarity of A to B is modeled by
the projection of the initial state into A and then into B.
It’s assumed that the initial state is neutral with respect to A and B
(i.e., the subject hasn’t been thinking about either).

¶5. If | i is the initial state, then

Sim(A,B) = kPBPA| ik2 = P{A && B}.

¶6. The subjects in this case are assumed to be more familiar with China
than N. Korea, so the China subspace is larger (see Fig. III.49).

¶7. Similarity of N. Korea to China: When N. Korea is compared to
China, more of its amplitude is retained by the final projection into the
higher dimensional subspace corresponding to China: Fig. III.49(a).

¶8. Similarity of China to N. Korea: In the opposite case, the projec-
tion into the lower dimensional Korea subspaces loses more amplitude:
Fig. III.49(b).

¶9. This is not universally true.

H.4 Cognition in Hilbert space

Material in this section is drawn from “Cognition in Hilbert space,” my
commentary that will be published in Behavioral and Brain Sciences with
[PB].

The target article [PB] defends the application of QP in a function-first
or top-down approach to modeling cognition. This is done by postulating
vectors in a low-dimensional space. I argue that consideration of the high-
dimensional complex-valued wavefunction underlying the state vector will
expand the value of QP in cognitive science.

H.4.a QM premises

¶1. To this end, application of QP in cognitive science would be aided by
importing two premises from quantum mechanics:

¶2. Wavefunction: The first premise is that the fundamental reality is
the wavefunction. In cognitive science this corresponds to postulating
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a spatially-distributed pattern of neural activity as the elements of the
cognitive state space. Therefore the basis vectors used in QP are in
fact basis functions for an infinite (or very high) dimensional Hilbert
space.

¶3. Unit complex valued: The second important fact is that wavefunc-
tion is complex-valued and that wavefunctions combine with complex
coe�cients. This is the main reason for interference and other non-
classical properties. The authors acknowledge this, but do not make
explicit use of complex numbers in the target article.

H.4.b Possible neural substrates

What is the analog of the complex-valued wavefunction in neurophysiology?
There are several possibilities, but perhaps the most obvious is the distri-
bution of neural activity across a region of cortex; even a square millimeter
of which can have hundreds of thousands of neurons. The dynamics will be
defined by a time-varying Hamiltonian, with each eigenstate being a spatial
distribution of neurons firing at a particular rate. The most direct represen-
tation of the magnitude and phase (or argument) of a complex quantity is
frequency and phase of neural impulses.

H.4.c Projection

¶1. Possible neural mechanisms: The target article specifies that a
judgment or decision corresponds to measurement of a quantum state,
which projects it into a corresponding subspace, but it is informative
to consider possible mechanisms. For example, the need to act defi-
nitely (such as coming to a conclusion to answer a question) can lead
to mutually competitive mechanisms, such as among the minicolumns
in a macrocolumn, which creates dynamical attractors corresponding
to measurement eigenspaces. Approach to the attractor amplifies cer-
tain patterns of activity at the expense of others. Orthogonal projec-
tors filter the neural activity and win the competition with a proba-
bility proportional to the squared amplitude of the patterns to which
they are matched. (In the case where impulse phases encode com-
plex phases, matching occurs when the phases are delayed in such a
way that the impulses reinforce.) The winner positively reinforces its
matched signal and the loser negatively reinforces the signal to which
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it is matched. Regardless of mechanism, during collapse, the energy of
the observed eigenstate of the decision (measurement) operator receives
the energy of the orthogonal eigenstates (this is the e↵ect of renormal-
ization). The projection switches a jumble of frequencies and phases
into a smaller, more coherent collection, corresponding to the answer
(observed) eigenspace.

¶2. No inherent bases: The target article suggests that a QP model
of a process begins by postulating basis vectors and qualitative an-
gles between alternative decision bases (significantly, only real rota-
tions are discussed). As a consequence, a QP model is treated as a
low-dimensional vector space. This is a reasonable, top-down strategy
for defining a QP cognitive model, but it can be misleading. There is
no reason to suppose that particular decision bases are inherent to a
cognitive Hilbert space. There may be a small number of ”hard-wired”
decisions, such as fight-or-flight, but the vast majority are learned. Cer-
tainly this is the case for decisions corresponding to lexical items such
as (un-)happy and (un-)employed.

¶3. Creation/modification of observables: Investigation of the dy-
namics of cognitive wavefunction collapse would illuminate the mecha-
nisms of decision making but also of the processes by which observables
form. This would allow modeling changes in the decision bases, either
temporary through context e↵ects or longer lasting through learning.
Many decision bases are ad hoc, as when we ask, “Do you admire
Telemachus in the Odyssey?” How such ad hoc projectors are organized
requires looking beneath a priori state basis vectors to the underlying
neural wavefunctions and the processes shaping them.

H.4.d Incompatible decisions

¶1. The commutator and anti-commutator: In QM the uncertainty
principle is a consequence of non-commuting measurement operators,
and the degree of non-commutativity can be quantified. Two measure-
ment operators P and Q commute if PQ = QP , that is, if the operator
PQ � QP is identically 0. If they do not commute, then PQ � QP
measures the degree of non-commutativity. This is expressed in QM
by the “commutator” [P,Q] = PQ � QP . It is relatively easy to show
that this implies an uncertainty relation: �P �Q � |h[P,Q]i|. That
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is, the product of the uncertainties on a state is bounded below by the
absolute mean value of the commutator on the state. Suppose H is a
measurement that returns 1 for |happyi and 0 for |unhappyi, and E is
a measurement that returns 1 for |employedi and 0 for |unemployedi.
If |employedi = a|happyi + b|unhappyi, then the commutator is

[H,E] = ab

✓
0 1

�1 0

◆
.

The absolute mean value of this commutator (applied to a state) gives
a minimum joint uncertainty. If we could measure [P,Q] for various
pairs of questions, P and Q, we could make quantitative empirical
predictions of the joint uncertainty in decisions.

¶2. Measuring commutator & anti-commutator: Might we design
experiments to measure the commutators and so quantify incompati-
bility among decisions? Certainly there are di�culties, such as making
independent measurements of both PQ and QP for a single subject, or
accounting for intersubject variability in decision operators. But mak-
ing such measurements would put more quantitative teeth into QP as
a cognitive model.

H.4.e Conclusions

In conclusion, the target article does an admirable job of defending
QP as a fruitful top-down model of decision making, but I believe it
would be more valuable if it paid greater attention to the complex-
valued wavefunction that underlies QP in both quantum mechanics
and cognition. This would allow a more detailed account of the ori-
gin of interference e↵ects and of the structure of both learned and ad
hoc decision operators. Finally, the treatment of incompatible deci-
sions can be made more rigorous by treating them quantitatively as
noncommuting operators.

H.5 Conclusions

¶1. Motivation: You might wonder why it is so important to understand
the less-then-perfect inferential abilities of humans. There are at least
two reasons, scientific and technological.
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¶2. Understanding human inference: It is important to understand
human inference as both pure and applied science.

¶3. Science: It reveals more about our human nature, and specifically
provides hints as to how the brain works.

¶4. Applications: In order to predict (and even manipulate) human be-
havior, we need to understand how humans determine their actions.

¶5. Technology: It might seem that the last thing we might want to
do would be to emulate in our machine intelligence the “imperfect,
fallacious” reasoning of humans.

¶6. It might be the case, however, that QP-based reasoning is better for
real-time purposeful action in natural, complex situations, where the
premisses of CP are inaccurate.
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