








The target of chemical organization theory are reaction networks. 

A reaction network consists of a set of molecules M and a set of reaction rules R. 

Therefore, we define a reaction network formally as a tuple ⟨M, R⟩ and call this 
tuple an algebraic chemistry in order to avoid conflicts with other formalizations 
of reaction networks.



Given a set M of molecular species and a set of reaction rules given by the relation R : PM (M) × PM (M). 
We call the pair ⟨M, R⟩ an algebraic chemistry, where PM (M) denotes the set of all multisets with 
elements from M. 

A multiset differs from an ordinary set in that it can contain multiple copies of the same element. A 
reaction rule is similar to a rewriting operation on a multiset.

Adopting the notion from chemistry, a reaction rule is written as A → B where both A and B are multisets 
of molecular species. The elements of each multi set are listed with “+” symbol between them. Instead of 
writing {s1,s2,...,sn}, the set is written as s1 + s2 + ··· + sn in the context of reaction rules. We also rewrite 
a + a → b to 2a → b for simplicity. Note that “+” is not an operator but a separator of elements.

⋆ 

 



A set of molecular species is called an organization if the following two properties are satisfied: closure 
and self-maintenance. A set of molecular species is closed when all reaction rules applicable to the set 
cannot produce a molecular species that is not in the set. This is similar to the algebraic closure of an 
operation in set theory. 



Closure: Given an algebraic chemistry ⟨M, R⟩, a set of molecular species C ⊆ M is closed, if for every 
reaction (A → B) ∈ R with A ∈ PM(C), also B ∈ PM(C) holds.

Self-Maintenance: Informally, it assures that all molecules that are consumed within a self-maintaining 
set can also be produced by some reaction pathways within the self-maintaining set.

.



Consider the set of Logical Reactions for the XOR Gate:

L =Lc ={a+b→c,a+B→C,A+b→C,A+B→c} 

Given this, we can see that:

● The set {a, b} is not an organization because it is not closed. The reaction a + b → c is applicable 
and produces a new molecular species c that is not a member of the set {a,b}. 

● The set {a,b,c} is closed but not an organization because it is not self-maintaining.





A logic circuit is a composition of logic gates. As such it can be fully described by a set of boolean functions and boolean variables, forming a 
boolean network. Let the boolean network be defined by a set of M boolean functions and a set of N (≥ M ) boolean variables:

{b1,...,bM,...,bN}

where {bj|1 ≤ j ≤ M} are determined by the boolean functions (internal variables) and the remaining variables {bj |M < j ≤ N } are the input variables of 
the boolean network. The set of boolean functions is

{bi = Fi(bq(i,1),...,bq(i,ni)) | i = 1,...,M}

where bq(i,k) indicates the boolean variable listed as the k-th argument of the i-th function. Since the i-th boolean function Fi takes ni boolean variables 
as arguments, there are 2^ni possible inputs. Thus the truth table Ti for function Fi has 2^ni rows and ni + 1 columns.



Given the boolean network, an algebraic chemistry ⟨M, R⟩ is designed as follows. For each boolean variable bj we assign two molecular species s2j−1 

and s2j representing the value 0 and the value 1 in it, respectively. Thus the set of molecular species M contains 2N molecular species as follows:

M = {s2j−1,s2j | j = 1,...,N}

The set of reaction rules can be decomposed into two sets of reactions:

R = L ∪ D.



Set of reactions L is derived from the logical operations of the boolean functions with L = �Mi=1 Li where Li is a set of logical reactions associated with 
the truth table Ti of boolean function Fi. For each input case h (each row of the truth table), one reaction rule is created:

Li = {Ai,h → Bi,h | h = 1,...,2ni}.

The lefthand side is a set of reactants Ai,h = {ai,1,h + ··· + ai,k,h + ··· + ai,ni,h} where ai,k,h is a molecular species representing the boolean variable that is 
taken as the k-th argument of function Fi and thus bq(i,k). Since two molecular species s2q(i,k)−1 and s2q(i,k) are assigned to boolean variable bq(i,k) 

depending on its content, the truth table Ti is used to select from the two. If the entry tih,k of the truth table is equal to 0, bq(i,k) must be set to 0 in the h-
th input case, and thus s2q(i,k)−1 is chosen as the reactant. Otherwise, ai,k,h is s2q(i,k):

Similarly, the righthand side is a set of products Bi,h = {bi,h}, and



The other component of set R is the set of destructive reactions D. Since binary states of a boolean variable bj are coded with two molecular species 
s2j−1 and s2j , the state becomes undefined when both or neither of the species are present. In order to avoid such a case, the two opposite molecular 
species are defined to vanish upon collision:

D={s2j−1+s2j →∅|j=1,...,N}









We visualize the set of all organizations by a 
Hasse diagram, in which organizations are 
arranged vertically according to their size in terms 
of the number of their members (e.g. Figure 1). 
Two organizations are connected by a line if the 
lower organization is contained in the organization 
above and there is no other organization in 
between. 







Other Implemented Structures
● Flip-Flop
● Controllable Oscillator




