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Sources

* Based on a dynamical system for solving k-SAT by M.
Ercsey-Ravasz and colleagues:

- B. Molnar and M. Ercsey-Ravasz, “Asymmetric continuous-time
neural networks without local traps for solving constraint
satisfaction problems,” PLoS ONE, vol. 8, no. 9, p. €73400, 2013.

- R. Sumi, B. Molnar, and M. Ercsey-Ravasz, “Robust optimization
with transiently chaotic dynamical systems,” EPL (Europhysics
Letters), vol. 106, p. 40002, 2014.

* Analog algorithm and circuit implementation in:

Brasford, D., Smith, J. M., Connor, R. J., MacLennan, B. J.,
Holleman, J. “The Impact of Analog Computational Error on
an Analog Boolean Satisfiability Solver,” IEEE International
Symposium for Circuits and Systems 2016, Montreal,
Canada, May 2016.
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Example k-SAT Problem

(X1VX3VX)A(X2V X3V X)A(X2V XV X5)

« N =5 variables, M = 3 clauses, k = 3 literals in
each

» Constraint density o = M/IN
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Variables

« Solution variables, s; € [-1, 1]

- Negative values represent Boolean 0

- Positive values represent Boolean 1
» Auxiliary variables, a,, € [0, 1]

- Indicate “urgency” of satisfying a clause
» Constraint matrix, c,, € {-1, 0, 1}

- ¢, = 1, if X; positive in clause m

- ¢, =-1,if X; negative in clause m

- Cpi =0, if X;not in clause m

* Note that we want 3, c,, S; to be positive
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Solution Squashing Function

-1 ifs< -1,
f&)=(s+1|—|s=1))/2=¢ s if —1<s<1,
+1 ifs>1.

e Keeps solution variables bounded

16/11/14 Unconventional Computation 5

Auxiliary Squashing Function

0 ifa<O,
gl@)=(1+la| —|1—a|)/2={ a if0<a<l,
+1 ifa>1.

» Keeps auxiliary variables bounded
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Analog Computation of SAT

Dynamics of Solution Variables

$i(t) = —si(t) + Af[si(®)] + Y cmiglam(t)]

¢ A is self-coupling parameter

 Summation tends to force s; to solution,
weighted by urgency
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Dynamics of Auxiliary Variables

N
i (t) = —am(t) + Bglam()] = Y cmiflsi(D)] +1 -k

i=1

¢ B is a self-coupling parameter
* a,, decreases to the extent clause m is satisfied
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Asymptotic Behavior

¢ Molnar and Ercsey-Ravasz prove: the only
stable fixed points of the system are solutions to
the problem

¢ They give numerical evidence that there are no
limit cycles

- provided A and B are in appropriate range

¢ Hard instances exhibit transient chaotic
behavior
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Bounds on Variables
si(t)| <1+ A+ Z |Cimi

—2k<apn(t) <2+ B

e provided they are initially in appropriate ranges:
s(0)]<1l,and0<a,0)=<1

e Important for analog implementation
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Pseudo-Energy Function
E[f(s) =K'K

N
where K,,, = 2~k H[l — cmi f(5i)]
i=1

¢ Increases with number of unsatisfied clauses

¢ Bracketed expression is O in satisfied clauses

* Not a Lyapunov function (does not decrease
monotonically)
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Analog Algorithm

M integrators for a,,

N integrators for s;

Instance programmed by
setting c,,; and
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—c,,; connections

Dotted cell reproduced
MN times

Integrators initialized to
small values to start
computation
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Schematic of g(a) Cell
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Evolution of Solution Variables

Values of S over time
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16/11/14 Unconventional Computation 14

Evolution of Auxiliary Variables

Values of A over time

N=10k=4,a=4
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Evolution of Pseudo-Energy

Energy over time
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Observations

e This particular algorithm has exponential
analog-time perfomance

- other similar analog algorithms are much more
efficient (Ercsey-Ravasz & Toroczkai, 2011)

¢ Deep theoretical connection between chaotic
dynamical systems and hard instances of SAT

- Turbulence and computational intractability

¢ One of many examples of analog solutions of
discrete problems
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