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B Basic concepts from quantum theory

B.1 Introduction

B.1.a Bases

In quantum mechanics certain physical quantities are quantized, such as the
energy of an electron in an atom. Therefore an atom might be in certain
distinct energy states |groundi, |first excitedi, |second excitedi, . . . . Other
particles might have distinct states such as spin-up |"i and spin-down |#i. In
each case these alternative states correspond to orthonormal vectors:

h"|#i = 0,
hground | first excitedi = 0,
hground | second excitedi = 0,
hfirst excited | second excitedi = 0.

In general we may express the same state with respect to di↵erent bases,
such as vertical or horizontal polarization |!i, |"i; or orthogonal diagonal
polarizations | %i, | &i.

B.1.b Superpositions of Basis States

One of the unique characteristics of quantum mechanics is that a physical
system can be in a superposition of basis states, for example,

| i = c
0

|groundi + c
1

|first excitedi + c
2

|second excitedi,

where the cj are complex numbers, called (probability) amplitudes. With
respect to a given basis, a state | i is interchangeable with its vector of
coe�cients, c = (c

0

, c
1

, . . . , cn)T. When the basis is understood, we can use
| i as a name for this vector. This ability of a quantum system to be in
many states simultaneously is the foundation of quantum parallelism.

As we will see, when we measure the quantum state

c
0

|E
0

i + c
1

|E
1

i + . . .+ cn|Eni

with respect to the |E
0

i, . . . , |Eni basis, we will get the result |Eji with
probability |cj|2 and the state will “collapse” into state |Eji. Since the prob-
abilities must add to 1, |c

0

|2+ |c
1

|2+ · · ·+ |cn|2 = 1, we know k| ik = 1, that
is, the vector is normalized.
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Figure III.1: Probability density of first six hydrogen orbitals. The main
quantum number (n = 1, 2, 3) and the angular momentum quantum number
(` = 0, 1, 2 = s, p, d) are shown. (The magnetic quantum number m = 0 in
these plots.) [fig. from wikipedia commons]

For the purposes of quantum computation, we usually pick two basis
states and use them to represent the bits 1 and 0, for example, |1i = |groundi
and |0i = |excitedi. We call this the computational basis. I’ve picked the
opposite of the “obvious” assignment (|0i = |groundi) just to show that the
assignment is arbitrary (just as for classical bits). Note that |0i 6= 0, the
zero element of the vector space, since k|0ik = 1 but k0k = 0. (Thus 0 does
not represent a physical state, since it is not normalized.)

B.2 Postulates of QM

In this section you will learn the four fundamental postulates of quantum
mechanics.1

1Quotes are from Nielsen & Chuang (2010) unless otherwise specified.



B. BASIC CONCEPTS FROM QUANTUM THEORY 79

B.2.a Postulate 1: state space

Postulate 1: Associated with any isolated physical system is a state space,
which is a Hilbert space. The state of the system “is completely defined by
its state vector, which is a unit vector in the system’s state space” (Nielsen
& Chuang, 2010). The state vector has to be normalized so that the total
probability is 1; it is equivalent to the probability axiom that states that the
maximum probability (probability of the whole sample space) = 1.

In previous examples, the state vectors have been finite dimensional, but
Hilbert spaces can be infinite dimensional as well. For example, a quantum
system might have an unlimited number of energy levels, |0i, |1i, |2i, . . . . If
the state of the system is a superposition, | i =

P1
k=0

ck|ki, then the squared
amplitudes must sum to 1,

P1
k=0

|ck|2 = 1.
A quantum state | i is often a wavefunction, which defines the probability

amplitude distribution (actually, the probability density function) of some
continuous quantity. For example, | i may define the complex amplitude
 (r) associated with each location r in space, and | i may define the complex
amplitude of  (p) associated with each momentum p (see Fig. III.1). Infinite
dimensional Hilbert spaces also include spaces of wavefunctions such as these.
The inner product of wavefunctions is defined:

h� |  i =
Z
R3

�(r) (r)dr.

(For this example we are assuming the domain is 3D space.) Wavefunctions
are also normalized, 1 = k| ik2 =

R
R3 | (r)|2dr. For our purposes, finite

dimensional spaces are usually adequate.
In quantum mechanics, global phase has no physical meaning; all that

matters is relative phase. In other words, if you consider all the angles
around the circle, there is no distinguished 0� (see Fig. III.2). Likewise, in
a continuous wave (such as a sine wave), there is no distinguished starting
point (see Fig. III.3).

To say all quantum states are normalized is equivalent to saying that their
absolute length has no physical meaning. That is, only their form (shape)
matters, not their absolute size. This is a characteristic of information.

Another way of looking at quantum states is as rays in a projective Hilbert
space. A ray is an equivalence class of nonzero vectors under the relation,
� ⇠=  i↵ 9z 6= 0 2 C : � = z , where �, 6= 0. That is, global magnitude
and phase (r and � in z = rei�) are irrelevant (i.e., have no physical meaning).
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q

Figure III.2: Relative phase vs. global phase. What matters in quantum
mechanics is the relative phase between state vectors (e.g., ✓ in the figure).
Global phase “has no physical meaning”; i.e., we can choose to put the 0�

point anywhere we like.

Figure III.3: Relative phase vs. global phase of sine waves. There is no
privileged point from which to start measuring absolute phase, but there is
a definite relative phase between the two waves.
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This is another way of expressing the fact that the form is significant, but
not the size. However, it is more convenient to use normalized vectors in
ordinary Hilbert spaces and to ignore global phase.

B.2.b Postulate 2: evolution

Postulate 2: “The evolution of a closed quantum system is described by
a unitary transformation” (Nielsen & Chuang, 2010). Therefore a closed
quantum system evolves by “complex rotation” of a Hilbert space. More
precisely, the state | i of the system at time t is related to the state | 0i of
the system at time t0 by a unitary operator U which depends only on the
times t and t0,

| 0i = U(t, t0)| i = U | i.
This postulate describes the evolution of systems that don’t interact with
the rest of the world. That is, the quantum system is a dynamical system of
relatively low dimension, whereas the environment, including any measure-
ment apparatus, is a thermodynamical system (recall Ch. II, Sec. B).

The laws of quantum mechanics, like the
laws of classical mechanics, are expressed in di↵erential equations. However,
in quantum computation we usually deal with quantum gates operating in
discrete time, so it is worth mentioning their relation.

The continuous-time evolution of a closed quantum mechanical system is
given by the Schrödinger equation:

i~ d

dt
| (t)i = H| (t)i,

or more compactly, i~| ̇i = H| i. H is the Hamiltonian of the system
(a fixed Hermitian operator), and ~ is the reduced Planck constant (often
absorbed into H).

Since H is Hermitian, it has a spectral decomposition, H =
P

E E|EihE|,
where the normalized |Ei are energy eigenstates (or stationary states) with
corresponding energies E. The lowest energy is the ground state energy.

In quantum computing, we are generally interested in the discrete-time
dynamics of quantum systems. Stone’s theorem shows that the solution to
the Schrödinger equation is:

| (t+ s)i = e�iHt/~| (s)i.
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Therefore define U(t)
def

= exp(�iHt/~); then | (t+s)i = U(t)| (s)i. It turns
out that U is unitary (Exer. III.3). Hence the evolution of a closed quantum
mechanical system from a state | i at time t to a state | 0i at time t0 can
be described by a unitary operator, | 0i = U | i. Conversely, for any unitary
operator U there is a Hermitian K such that U = exp(iK) (Exer. III.4).

B.2.c Postulate 3: quantum measurement

What happens if the system is no longer closed, that is, if it interacts with
the larger environment? In particular, what happens if a quantum system
interacts with a much larger measurement apparatus, the purpose of which
is to translate a microscopic state into a macroscopic, observable e↵ect? For
example, suppose we have a quantum system that can be in two distinct
states, for example, an atom that can be in a ground state |0i and an ex-
cited state |1i. Since they are distinct states, they correspond to orthogonal
vectors, h0 | 1i = 0. Suppose further that we have a measurement appara-
tus that turns on one light if it measures state |0i and a di↵erent light if it
measures state |1i.

Now consider an atom in a quantum state | i = 1

2

|0i+
p

3

2

|1i, a superpo-
sition of the states |0i and |1i. When we measure | i in the computational

basis, we will measure |0i with probability
��1
2

��2 = 1

4

, and we will measure |1i
with probability

���p3

2

���2 = 3

4

. After measurement, the system is in the state we

measured (|0i or |1i, respectively); this is the “collapse” of the wavefunction.
We depict the possibilities as follows:

| i 1/4�! |0i,

| i 3/4�! |1i.

Now consider a more complicated example, a quantum system that can be
in three distinct states, say an atom that can be in a ground state |0i or two
excited states, |1i and |2i. Note that h0 | 1i = h1 | 2i = h0 | 2i = 0. Suppose
the quantum system is in state | i = 1p

2

|0i+ 1

2

|1i+ 1

2

|2i. Further, suppose we
have a measurement apparatus that turns on a light if it measures state |0i
and does not turn it on otherwise. When we measure | i, with probability��� 1p

2

���2 = 1

2

we will measure |0i and after measurement it will collapse to state

|0i. With probability
��1
2

��2 + ��1
2

��2 = 1

2

it will not measure state |0i and the
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light won’t go on. In this case, it will collapse to state 1p
2

|1i + 1p
2

|2i, which
we get by renormalizing the state measured:

1

2

|1i + 1

2

|2iq��1
2

��2 + ��1
2

��2 =
1p
2
|1i + 1p

2
|2i.

We can depict the possible outcomes as follows:

| i = 1p
2
|0i + 1

2
|1i + 1

2
|2i

8<:
1/2�! |0i
1/2�! 1p

2

|1i + 1p
2

|2i
.

In other words, we zero out the coe�cients of the states we didn’t measure
and renormalize (because quantum states are always normalized). Now we
develop these ideas more formally.

A measurement can be characterized by a set of projectors Pm, for each
possible measurement outcome m. In the first example above, the measure-
ment operators are P

1

= |0ih0| and P
2

= |1ih1|. In the second example, the
operators are P

1

= |0ih0| and P
2

= |1ih1|+|2ih2|. In the latter case, P
1

projects
the quantum state into the subspace spanned by {|0i}, and P

2

projects the
quantum state into the subspace spanned by {|1i, |2i}. These are orthogonal
subspaces of the original space (spanned by {|0i, |1i, |2i}).

Since a measurement must measure some definite state, a projective mea-
surement is a set of projectors P

1

, . . . , PN satisfying: (1) They project into
orthogonal subspaces, so for m 6= n we have PmPn = 0, the identically zero
operator. (2) They are complete, that is, I =

PN
m=1

Pm, so measurement
always produces a result. Projectors are also idempotent, PmPm = Pm, since
if a vector is already projected into the m subspace, projecting it again has
no e↵ect. Finally, projectors are Hermitian (self-adjoint), as we can see:

P †
m =

 X
j

|⌘jih⌘j|
!†

=
X

j

(|⌘jih⌘j|)† =
X

j

|⌘jih⌘j| = Pm.

Now we can state Postulate 3.

Postulate 3: Quantum measurements are described by a complete set of
orthogonal projectors, Pm, for each possible measurement outcome m.
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Measurement projects the state into a subspace with a probability given
by the squared magnitude of the projection. Therefore, the probability of
measurement m of state | i is given by:

p(m) = kPm| ik2 = h | P †
mPm |  i = h | PmPm |  i = h | Pm |  i.

(III.1)
This is Born’s Rule, which gives the probability of a measurement outcome.
The measurement probabilities must sum to 1, which we can check:

X
m

p(m) =
X
m

h | Pm |  i = h |
 X

m

Pm

!
| i = h | I |  i = h |  i = 1.

This follows from the completeness if the projectors,
P

m Pm = I.
For an example, suppose Pm = |mihm|, and write the quantum state in

the measurement basis: | i =
P

m cm|mi. Then the probability p(m) of
measuring m is:

p(m) = h | Pm |  i
= h |(|mihm|)| i
= h | mihm |  i
= hm |  ihm |  i
= |hm |  i|2

= |cm|2.

More generally, the same holds if Pm projects into a subspace, Pm =
P

k |kihk|;
the probability is p(m) =

P
k |ck|2. Alternatively, we can “zero out” the cj

for the orthogonal subspace, that is, for the |jihj| omitted by Pm. To maintain
a total probability of 1, the normalized state vector after measurement is

Pm| ip
p(m)

=
Pm| i

kPm| ik .

B.2.d Postulate 4: composite systems

Postulate 4: “The state space of a composite physical system is the tensor
product of the state spaces of the component physical systems” (Nielsen &
Chuang, 2010). If there are n subsystems, and subsystem j is prepared in
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state | ji, then the composite system is in state

| 
1

i ⌦ | 
2

i ⌦ · · · ⌦ | ni =
nO

j=1

| ji.

B.3 Wave-particle duality (supplementary)

Some of the capabilities of quantum computation depend on the fact that
microscopic objects behave as both particles and waves. To see why, imagine
performing the double-slit experiment with three di↵erent kinds of objects.

Imagine a stream of classical particles impinging on the two slits and
consider the probability of their arriving on a screen. Define Pj(x) to be the
probability of a particle arriving at x with just slit j open, and P

12

(x) to
be the probability of a particle arriving at x with both open. We observe
P

12

= P
1

+ P
2

, as expected.
Now consider classical waves, such as water waves, passing through the

two slits. The energy I of a water wave depends on the square of its height
H, which may be positive or negative. Hence,

I
12

= H2

12

= (H
1

+H
2

)2 = H2

1

+ 2H
1

H
2

+H2

2

= I
1

+ 2H
1

H
2

+ I
2

.

The 2H
1

H
2

term may be positive or negative, which leads to constructive
and destructive interference.

Finally, consider quantum particles. The probability of observing a par-
ticle is given by the rule for waves. In particular, the probability P is given
by the square of a complex amplitude A:

P
12

= |A
1

+ A
2

|2 = A
1

A
1

+ A
1

A
2

+ A
2

A
1

+ A
2

A
2

,

= P
1

+ A
1

A
2

+ A
1

A
2

+ P
2

.

Again, the interference terms A
1

A
2

+A
1

A
2

can be positive or negative lead-
ing to constructive and destructive interference. How does a particle going
through one slit “know” whether or not the other slit is open?


