
C. QUANTUM INFORMATION 99

C Quantum information

C.1 Qubits

C.1.a Single qubits

Just as the bits 0 and 1 are represented by distinct physical states in a conven-
tional computer, so the quantum bits (or qubits) |0i and |1i are represented
by distinct quantum states. We call |0i and |1i the computational or stan-
dard measurement basis. What distinguishes qubits from classical bits is that
they can be in a superposition of states, a
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|2 = 1. If we measure this state in the computational basis, we will
observe |0i with probability |a
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|2 and likewise for |1i; after measurement the
qubit is in the observed state. This applies, of course, to measurement in
any basis. I will depict the measurement possibilities this way:
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The following sign basis is often useful:

|+i def

=
1p
2
(|0i + |1i), (III.8)

|�i def

=
1p
2
(|0i � |1i). (III.9)

Notice that |+i is “halfway” between |0i and |1i, and likewise |�i is halfway
between |0i and �|1i. Draw them to be sure you see this. As a consequence
(Exer. III.25):

|0i =
1p
2
(|+i + |�i),

|1i =
1p
2
(|+i � |�i).

To remember this, think (+x) + (�x) = 0 and (+x) � (�x) = (+2x), which
is nonzero (this is just a mnemonic).
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Even though a quantum bit can be put in infinitely many superposition states, it is only
possible to extract a single classical bit’s worth of information from a single quantum bit.
The reason that no more information can be gained from a qubit than in a classical bit is
that information can only be obtained by measurement. When a qubit is measured, the
measurement changes the state to one of the basis states in the way seen in the photon
polarization experiment. As every measurement can result in only one of two states, one of
the basis vectors associated to the given measuring device, so, just as in the classical case,
there are only two possible results. As measurement changes the state, one cannot measure
the state of a qubit in two different bases. Furthermore, as we shall see in the section 4.1.2,
quantum states cannot be cloned so it is not possible to measure a qubit in two ways, even
indirectly by, say, copying the qubit and measuring the copy in a different basis from the
original.

3.1 Quantum Key Distribution
Sequences of single qubits can be used to transmit private keys on insecure channels. In
1984 Bennett and Brassard described the first quantum key distribution scheme [Bennett
and Brassard 1987; Bennett et al. 1992]. Classically, public key encryption techniques,
e.g. RSA, are used for key distribution.

Consider the situation in which Alice and Bob want to agree on a secret key so that they
can communicate privately. They are connected by an ordinary bi-directional open channel
and a uni-directional quantum channel both of which can be observed by Eve, who wishes
to eavesdrop on their conversation. This situation is illustrated in the figure below. The
quantum channel allows Alice to send individual particles (e.g. photons) to Bob who can
measure their quantum state. Eve can attempt to measure the state of these particles and
can resend the particles to Bob.

quantum channel

classical channel

Eve

BobAlice

To begin the process of establishing a secret key, Alice sends a sequence of bits to Bob
by encoding each bit in the quantum state of a photon as follows. For each bit, Alice
randomly uses one of the following two bases for encoding each bit:

0 ! |"i
1 ! |!i

Figure III.6: Quantum key distribution [from Rie↵el & Polak (2000)].

Figure III.7: Example if QKD without interference. [fig. from wikipedia]
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Figure III.8: Example if QKD with eavesdropping. [fig. from wikipedia]

C.1.b Quantum key distribution

In 1984 Bennett and Brassard showed how sequences of qubits could be used
to distribute an encryption key securely.3 This is called the “BB84 protocol.”
Ironically, the idea was proposed initially by Stephen Wiesner in the 1970s,
but he couldn’t get it published.

We are supposing that Alice is transmitting a key to Bob over two chan-
nels, one classical and one quantum. Eve may eavesdrop on both channels
and even replace the signals in them. Over the quantum channel Alice will
send the photons to Bob that encode the key bits in two di↵erent bases, ei-
ther {|"i, |!i}, which I’ll call the “+ basis,” or {| %i, | &i} (the “⇥ basis”)
(respectively 0, 1 in each basis). Alice chooses randomly the basis in which
to encode her bits (see Fig. III.7). Bob will measure the photons according
to these two bases, also chosen randomly and independently of Alice. After
the transmission, Alice and Bob will communicate over the classical channel
and compare their random choices; where they picked the same basis, they
will keep the bit, otherwise they will discard it. (They will have agreed on
about 50% of the choices.)

Suppose Eve is eavesdropping on the quantum channel, measuring the
qubits and retransmitting them to Bob (see Fig. III.8). About 50% of the
time, she will guess the wrong basis, and will also resend it in this same
incorrect basis. If this is one of the times Alice and Bob chose the same
basis, the bit will nevertheless be incorrect about half of the time (the times

3This section is based on Rie↵el & Polak (2000), which is also the source for otherwise
unattributed quotes.
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Eve chose the wrong basis). That is, about 50% of the time Eve picks the
same basis as Alice, so she reads the bit correctly and transmits it to Bob
correctly. About 50% of the time Eve guesses the wrong basis. She will
know this, if she is listening in on the classical channel, but she has already
transmitted it to Bob in the wrong basis. If this is a case in which Alice and
Bob used the same basis (and so Bob should get it correct), he will get it
incorrect 50% of the time, since Eve transmitted it in the other basis. So
25% of the bits that should be correct will be wrong. This high error rate
will be apparent to Alice and Bob if they have been using an error-detecting
code for the key. (In e↵ect Eve is introducing significant, detectable noise
into the channel.) Furthermore, Eve’s version of the key will be about 25%
incorrect. Therefore Bob knows that the key was not transmitted securely
and Eve gets an incorrect key.

This is only the most basic technique, and it has some vulnerabilities, and
so other techniques have been proposed, but they are outside the scope of this
book. “The highest bit rate system currently demonstrated exchanges secure
keys at 1 Mbit/s (over 20 km of optical fibre) and 10 kbit/s (over 100 km
of fibre)”4 “As of March 2007 the longest distance over which quantum key
distribution has been demonstrated using optic fibre is 148.7 km, achieved
by Los Alamos National Laboratory/NIST using the BB84 protocol.” In
Aug. 2015 keys were distributed over a 307 km optical cable, with 12.7 kbps
key generation rate. “The distance record for free space QCD [quantum
key distribution] is 144 km between two of the Canary Islands, achieved
by a European collaboration using entangled photons (the Ekert scheme)
in 2006,[7] and using BB84 enhanced with decoy states[8] in 2007.[9] The
experiments suggest transmission to satellites is possible, due to the lower
atmospheric density at higher altitudes.” At least three companies o↵er
commercial QKD. “Quantum encryption technology provided by the Swiss
company Id Quantique was used in the Swiss canton (state) of Geneva to
transmit ballot results to the capitol in the national election occurring on
October 21, 2007.” Four QKD networks have been in operation since mid-
late 2000s. Among them,

[t]he world’s first computer network protected by quantum key
distribution was implemented in October 2008, at a scientific
conference in Vienna. The name of this network is SECOQC
(Secure Communication Based on Quantum Cryptography) and

4https://en.wikipedia.org/wiki/Quantum key distribution (accessed 12-09-18).
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EU funded this project. The network used 200 km of standard
fibre optic cable to interconnect six locations across Vienna and
the town of St Poelten located 69 km to the west.

C.1.c Multiple qubits

We can combine multiple qubits into a quantum register. By Postulate 4, if
H is the state space of one qubit, then the tensor power H⌦n will be the state
space of an n-qubit quantum register. The computational basis of this space

is the set of all vectors |b
1

b
2

· · · bni with bk 2 2. (I define 2
def

= {0, 1} to be
the set of bits, and in general I use a boldface integer N for the set integers
{0, 1, . . . , N � 1}.) Therefore the dimension of the space H⌦n is 2n, and the
set of states is the set of normalized vectors in C2

n
. For 10 qubits we are

dealing with 1024-dimensional complex vectors (because each of the 210 basis
vectors has its own complex amplitude). This is a huge space, exponentially
larger than the 2n classical n-bit strings. This is part of the origin of quantum
parallelism, because we can compute on all of these qubit strings in parallel.
Consider a quantum computer with 500 qubits; it could be very small (e.g.,
500 atoms), but it is computing in a space of 2500 complex numbers. Note
that 2500 is more than the number of particles in the universe times the age
of the universe in femtoseconds! That is, a 500-qubit quantum computer is
equivalent to a universe-sized computer working at high speed since the Big
Bang.

Whereas an ordinary direct product has dimension dim(S⇥T ) = dimS+
dimT , a tensor product has dimension dim(S ⌦ T ) = dimS ⇥ dimT . Hence
if dimS = 2, dimS⌦n = 2n.

Measuring some of the qubits in a register causes partial collapse of the
quantum state. Suppose we have a composite state
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Do this by striking out all terms in | i that have 1 in the first qubit.
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