
104 CHAPTER III. QUANTUM COMPUTATION
Quantum computation 21

!
!
"

! !"# "

!
"

! $!% "

!
"

! &"# "
!
"

! "# "

!
"

!! !$!% "

! !"' !

"#$ "%$

"&$ "'$

"($

")$

Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
multiple qubit gate, the controlled- . The matrix representation of the controlled- , UCN , is written with
respect to the amplitudes for |00�, |01�, |10�, and |11�, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

|00i ! |00i; |01i ! |01i; |10i ! |11i; |11i ! |10i. (1.18)

Another way of describing the is as a generalization of the classical gate, since
the action of the gate may be summarized as |A, Bi ! |A, B � Ai, where � is addition
modulo two, which is exactly what the gate does. That is, the control qubit and the
target qubit are ed and stored in the target qubit.
Yet another way of describing the action of the is to give a matrix represen-

tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of UCN describes the transformation that occurs to |00i, and similarly for the
other computational basis states, |01i, |10i, and |11i. As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that UCN is a unitary
matrix, that is, U †

CNUCN = I.
We noticed that the can be regarded as a type of generalized- gate. Can

other classical gates such as the or the regular gate be understood as unitary
gates in a sense similar to the way the quantum gate represents the classical
gate? It turns out that this is not possible. The reason is because the and gates
are essentially irreversible or non-invertible. For example, given the output A�B from
an gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the gate.
On the other hand, unitary quantum gates are always invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
invertible sense will be a crucial step in understanding how to harness the power of

Figure III.9: Left: classical gates. Right: controlled-Not gate. [from Nielsen
& Chuang (2010, Fig. 1.6)]

C.2 Quantum gates

Quantum gates are analogous to ordinary logic gates (the fundamental build-
ing blocks of circuits), but they must be unitary transformations (see Fig.
III.9, left, for ordinarty logic gates). Fortunately, Bennett, Fredkin, and
To↵oli have already shown how all the usual logic operations can be done
reversibly. In this section you will learn the most important quantum gates.

C.2.a Single-qubit gates

The NOT gate is simple because it is reversible: NOT|0i = |1i, NOT|1i =
|0i. Its desired behavior can be represented:

NOT : |0i 7! |1i
|1i 7! |0i.

Note that defining it on a basis defines it on all quantum states. Therefore
it can be written as a sum of dyads (outer products):

NOT = |1ih0| + |0ih1|.

You can read this, “return |1i if the input is |0i, and return |0i if the input
is |1i.” Recall that in the standard basis |0i = (1 0)T and |1i = (0 1)T.

C. QUANTUM INFORMATION 105

Therefore NOT can be represented in the standard basis by computing the
outer products:

NOT =

✓
0
1

◆
(1 0) +

✓
1
0

◆
(0 1) =

✓
0 0
1 0

◆
+

✓
0 1
0 0

◆
=

✓
0 1
1 0

◆
.

The first column represents the result for |0i, which is |1i, and the second
represents the result for |1i, which is |0i.

Although NOT is defined in terms of the computational basis vectors, it
applies to any qubit, in particular to superpositions of |0i and |1i:

NOT(a|0i + b|1i) = aNOT|0i + bNOT|1i = a|1i + b|0i = b|0i + a|1i.

Therefore, NOT exchanges the amplitudes of |0i and |1i.
In quantum mechanics, the NOT transformation is usually called X. It

is one of four useful unitary operations, called the Pauli matrices, which are
worth remembering. In the standard basis:

I
def

= �
0

def

=

✓
1 0
0 1

◆
(III.10)

X
def

= �x
def

= �
1

def

=

✓
0 1
1 0

◆
(III.11)

Y
def

= �y
def

= �
2

def

=

✓
0 i
�i 0

◆
(III.12)

Z
def

= �z
def

= �
3

def

=

✓
1 0
0 �1

◆
(III.13)

We have seen thatX is NOT, and I is obviously the identity gate. Z leaves |0i
unchanged and maps |1i to �|1i. It is called the phase-flip operator because
it flips the phase of the |1i component by ⇡ relative to the |0i component.
(Recall that global/absolute phase doesn’t matter.) The Pauli matrices span
the space of 2 ⇥ 2 complex matrices (Exer. III.15).

Note that Z|+i = |�i and Z|�i = |+i. It is thus the analog in the sign
basis of X (NOT) in the computational basis. What is the e↵ect of Y on the
computational basis vectors? (Exer. III.10)

Note that there is an alternative definition of Y that di↵ers only in global
phase:

Y
def

=

✓
0 1

�1 0

◆
.

106 CHAPTER III. QUANTUM COMPUTATION

This is a 90� = ⇡/2 counterclockwise rotation: Y (a|0i + b|1i) = b|0i � a|1i.
Draw a diagram to make sure you see this.

Note that the Pauli operations apply to any state, not just basis states.
The X, Y , and Z operators get their names from the fact that they reflect
state vectors along the x, y, z axes of the Bloch-sphere representation of a
qubit, which we will not use in this book. Since they are reflections, they are
Hermitian (their own inverses).

C.2.b Multiple-qubit gates

We know that any logic circuit can be built up from NAND gates. Can we
do the same for quantum logic, that is, is there a universal quantum logic
gate? We can’t use NAND, because it’s not reversible, but we will see that
there are universal sets of quantum gates.

The controlled-NOT or CNOT gate has two inputs: the first determines
what it does to the second (negate it or not).

CNOT : |00i 7! |00i
|01i 7! |01i
|10i 7! |11i
|11i 7! |10i.

Its first argument is called the control and its second is called the target,
controlled, or data qubit. It is a simple example of conditional quantum
computation. CNOT can be translated into a sum-of-dyads representation
(Sec. A.2.d), which can be written in matrix form (Ex. III.18, p. 181):

CNOT = |00ih00|
+ |01ih01|
+ |11ih10|
+ |10ih11|

We can also define it (for x, y 2 2), CNOT|xyi = |xzi, where z = x � y,
the exclusive OR of x and y. That is, CNOT|x, yi = |x, x � yi CNOT is
the only non-trivial 2-qubit reversible logic gate. Note that CNOT is unitary
since obviously CNOT = CNOT† (which you can show using its dyadic
representation or its matrix representation, Ex. III.18, p. 181). See the right

C. QUANTUM INFORMATION 107

Introduction to Quantum Computing · 15

gates are unitary. For example

Y Y

� =

✓
0 �1
1 0

◆ ✓
0 1

�1 0

◆
= I.

The controlled-NOT gate, Cnot, operates on two qubits as follows: it changes the second
bit if the first bit is 1 and leaves this bit unchanged otherwise. The vectors |00i, |01i,
|10i, and |11i form an orthonormal basis for the state space of a two-qubit system, a 4-
dimensional complex vector space. In order to represent transformations of this space in
matrix notation we need to choose an isomorphism between this space and the space of
complex four tuples. There is no reason, other than convention, to pick one isomorphism
over another. The one we use here associates |00i, |01i, |10i, and |11i to the standard 4-
tuple basis (1, 0, 0, 0)T , (0, 1, 0, 0)T , (0, 0, 1, 0)T and (0, 0, 0, 1)T , in that order. The Cnot

transformation has representations

Cnot : |00i ! |00i
|01i ! |01i
|10i ! |11i
|11i ! |10i

0BB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCA .

The transformation Cnot is unitary since C

�
not = Cnot and CnotCnot = I . The Cnot gate

cannot be decomposed into a tensor product of two single-bit transformations.
It is useful to have graphical representations of quantum state transformations, especially

when several transformations are combined. The controlled-NOT gate Cnot is typically
represented by a circuit of the form

�
⇥

.

The open circle indicates the control bit, and the⇥ indicates the conditional negation of the
subject bit. In general there can be multiple control bits. Some authors use a solid circle to
indicate negative control, in which the subject bit is toggled when the control bit is 0.
Similarly, the controlled-controlled-NOT, which negates the last bit of three if and only

if the first two are both 1, has the following graphical representation.

�
�

⇥

Single bit operations are graphically represented by appropriately labelled boxes as
shown.

Z

Y

Figure III.10: Diagram for CCNOT or To↵oli gate [fig. from Nielsen &
Chuang (2010)]. Sometimes the ⇥ is replaced by � because CCNOT|xyzi =
|x, y, xy � zi.

panel of Fig. III.9 (p. 104) for the matrix and note the diagram notation for
CNOT.

CNOT can be used to produce an entangled state:

CNOT


1p
2
(|0i + |1i)

�
|0i = CNOT

1p
2
(|00i+|10i) = 1p

2
(|00i+|11i) = �

00

.

Note also that CNOT|x, 0i = |x, xi, that is, FAN-OUT, which would seem
to violate the No-cloning Theorem, but it works as expected only for x 2 2.
In general CNOT| i|0i 6= | i| i (Exer. III.19).

Another useful gate is the three-input/output To↵oli gate or controlled-
controlled-NOT. It negates the third qubit if and only if the first two qubits
are both 1. For x, y, z 2 2,

CCNOT|1, 1, zi def

= |1, 1,¬zi,
CCNOT|x, y, zi def

= |x, y, zi, otherwise.

All the Boolean operations can be implemented (reversibly!) by using To↵oli
gates (Exer. III.21). For example, CCNOT|x, y, 0i = |x, y, x ^ yi. Thus it is
a universal gate for quantum logic.

In Jan. 2009 CCNOT was implemented successfully using trapped ions.5

5Monz, T.; Kim, K.; Hänsel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum To↵oli Gate with Trapped
Ions.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.

108 CHAPTER III. QUANTUM COMPUTATION

C.2.c Walsh-Hadamard transformation

Recall that the sign basis is defined |+i def

= 1p
2

(|0i+ |1i) and |�i def

= 1p
2

(|0i �
|1i). The Hadamard transformation or gate is defined:

H|0i def

= |+i, (III.14)

H|1i def

= |�i. (III.15)

In sum-of-dyads form: H
def

= |+ih0| + |�ih1|. In matrix form (with respect to
the standard basis):

H
def

=
1p
2

✓
1 1
1 �1

◆
. (III.16)

Note that H is self-adjoint, H2 = I (since H† = H). H can be defined also
in terms of the Pauli matrices: H = (X + Z)/

p
2 (Exer. III.28).

The H transform can be used to rotate the computational basis into the
sign basis and back (Exer. III.27):

H(a|0i + b|1i) = a|+i + b|�i,
H(a|+i + b|�i) = a|0i + b|1i.

Alice and Bob could use this in QKD.
When applied to a |0i, H generates an (equal-amplitude) superposition of

the two-bit values, H|0i = 1p
2

|0i+ 1p
2

|1i. This is a useful way of generating a
superposition of both possible input bits, and the Walsh transform, a tensor
power of H, can be applied to a quantum register to generate a superposition
of all possible register values. Consider the n = 2 case:

H⌦2| ,�i = (H ⌦ H) (| i ⌦ |�i)
= (H| i) ⌦ (H|�i)

In particular,

H⌦2|00i = (H|0i) ⌦ (H|0i)
= |+i⌦2

=


1p
2
(|0i + |1i)

�⌦2

=

✓
1p
2

◆
2

(|0i + |1i)(|0i + |1i)

=
1p
22

(|00i + |01i + |10i + |11i).

C. QUANTUM INFORMATION 109

Notice that this is an equal superposition of all possible values of the 2-qubit
register. (I wrote the amplitude in a complicated way, 1/

p
22, to help you

see the general case.) In general,

H⌦n|0i⌦n =
1p
2n

nz }| {
(|0i + |1i) ⌦ (|0i + |1i) ⌦ · · · ⌦ (|0i + |1i)

=
1p
2n

(|0i + |1i)⌦n

=
1p
2n

X
x22

n

|xi

=
1p
2n

2

n�1X
x=0

|xi.

Note that “2n�1” represents a string of n 1-bits, and that 2 = {0, 1}. Hence,
H⌦n|0i⌦n generates an equal superposition of all the 2n possible values of the
n-qubit register. We often write Wn = H⌦n for the Walsh transformation.

An linear operation applied to such a superposition state in e↵ect applies
the operation simultaneously to all 2n possible input values. This is expo-
nential quantum parallelism and suggests that quantum computation might
be able to solve exponential problems much more e�ciently than classical
computers. To see this, suppose U |xi = |f(x)i. Then:

U(H⌦n|0i⌦n) = U

"
1p
2n

2

n�1X
x=0

|xi
#
=

1p
2n

2

n�1X
x=0

U |xi = 1p
2n

2

n�1X
x=0

|f(x)i

This is a superposition of the function values f(x) for all of the 2n possible
values of x; it is computed by one pass through the operator U .

