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Figure I11.9: Left: classical gates. Right: controlled-NOT gate. [from Nielsen
& Chuang (2010, Fig. 1.6)]

C.2 Quantum gates

Quantum gates are analogous to ordinary logic gates (the fundamental build-
ing blocks of circuits), but they must be unitary transformations (see Fig.
II1.9, left, for ordinarty logic gates). Fortunately, Bennett, Fredkin, and
Toffoli have already shown how all the usual logic operations can be done
reversibly. In this section you will learn the most important quantum gates.

C.2.a SINGLE-QUBIT GATES

The NOT gate is simple because it is reversible: NOT|0) = |1), NOT|1) =
|0). Its desired behavior can be represented:

NOT: [0) — |1)
) = 10).

Note that defining it on a basis defines it on all quantum states. Therefore
it can be written as a sum of dyads (outer products):

NOT = [1}0] + |0)1].

You can read this, “return |1) if the input is |0), and return |0) if the input
is [1).” Recall that in the standard basis [0) = (1 0)* and [1) = (0 1)T.
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Therefore NOT can be represented in the standard basis by computing the
outer products:

- (D)an (Don=(2)+ (1) (2 1)

The first column represents the result for |0), which is |1), and the second
represents the result for |1), which is |0).

Although NOT is defined in terms of the computational basis vectors, it
applies to any qubit, in particular to superpositions of |0) and |1):

NOT(a|0) + b[1)) = aNOT|0) + bNOT|1) = a[1) + b|0) = b[0) + a|1).

Therefore, NOT exchanges the amplitudes of |0) and |1).

In quantum mechanics, the NOT transformation is usually called X. It
is one of four useful unitary operations, called the Pauli matrices, which are
worth remembering. In the standard basis:

ef ef 1 O

1%, & (o 1) (111.10)

X ey e (0] (I1.11)
10

y s, &y, & < 0 Z) (I11.12)
— 0

7, e, (é _01) (I11.13)

We have seen that X is NOT, and [ is obviously the identity gate. Z leaves |0)
unchanged and maps |1) to —|1). It is called the phase-flip operator because
it flips the phase of the |1) component by 7 relative to the |0) component.
(Recall that global/absolute phase doesn’t matter.) The Pauli matrices span
the space of 2 x 2 complex matrices (Exer. I11.15).

Note that Z|+) = |—) and Z|—) = |+). It is thus the analog in the sign
basis of X (NOT) in the computational basis. What is the effect of Y on the
computational basis vectors? (Exer. I11.10)

Note that there is an alternative definition of Y that differs only in global

phase:
def 0 1
y ( ol )
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This is a 90° = 7/2 counterclockwise rotation: Y (a|0) + b|1)) = b|0) — a|1).
Draw a diagram to make sure you see this.

Note that the Pauli operations apply to any state, not just basis states.
The X, Y, and Z operators get their names from the fact that they reflect
state vectors along the x,y, z axes of the Bloch-sphere representation of a
qubit, which we will not use in this book. Since they are reflections, they are
Hermitian (their own inverses).

C.2.b MULTIPLE-QUBIT GATES

We know that any logic circuit can be built up from NAND gates. Can we
do the same for quantum logic, that is, is there a universal quantum logic
gate? We can’t use NAND, because it’s not reversible, but we will see that
there are universal sets of quantum gates.

The controlled-NOT or CNOT gate has two inputs: the first determines
what it does to the second (negate it or not).

CNOT: ]00) + |00)
|01) ~— [01)
|10) — |11)
|11) — [10).

Its first argument is called the control and its second is called the target,
controlled, or data qubit. It is a simple example of conditional quantum
computation. CNOT can be translated into a sum-of-dyads representation
(Sec. A.2.d), which can be written in matrix form (Ex. III.18, p. 181):

CNOT = [00%00|
+ |o1Y01]
+ [11Y10]
+ [10¥11]

We can also define it (for z,y € 2), CNOT|zy) = |zz), where z = z @ y,
the exclusive OR of z and y. That is, CNOT|z,y) = |z,z & y) CNOT is
the only non-trivial 2-qubit reversible logic gate. Note that CNOT is unitary
since obviously CNOT = CNOT' (which you can show using its dyadic
representation or its matrix representation, Ex. II1.18, p. 181). See the right
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Figure I11.10: Diagram for CCNOT or Toffoli gate [fig. from Nielsen &
Chuang (2010)]. Sometimes the x is replaced by & because CCNOT |zyz) =
|z, y, 2y @ 2).

panel of Fig. II1.9 (p. 104) for the matrix and note the diagram notation for
CNOT.

CNOT can be used to produce an entangled state:

CNOT | -(10)+ 1)) [0) = ENOT—(00}+10)) = -

V2 V2 V2

Note also that CNOT|z,0) = |z, x), that is, FAN-OUT, which would seem
to violate the No-cloning Theorem, but it works as expected only for x € 2.
In general CNOT|¢)[0) # [¢)|¢)) (Exer. I11.19).

Another useful gate is the three-input/output Toffoli gate or controlled-
controlled-NOT. It negates the third qubit if and only if the first two qubits
are both 1. For z,y, 2 € 2,

(100)+(11)) = Boo-

CCNOTI|1,1,2) = |[1,1,-2),
CCNOT|z,y, 2) e |z, y,2), otherwise.

All the Boolean operations can be implemented (reversibly!) by using Toffoli
gates (Exer. I11.21). For example, CCNOT|z,y,0) = |z,y,x A y). Thus it is
a universal gate for quantum logic.

In Jan. 2009 CCNOT was implemented successfully using trapped ions.’

®Monz, T.; Kim, K.; Hansel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum Toffoli Gate with Trapped
Tons.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.
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C.2.c WALSH-HADAMARD TRANSFORMATION

Recall that the sign basis is defined |+) = = 12(]O> + 1)) and |—) o (|0>
|1)). The Hadamard transformation or gate is defined:

H0) & |4, (I11.14)

oy -, (I11.15)

In sum-of-dyads form: H < |—|—)(0| + |—X1]. In matrix form (with respect to

the standard basis):
def 1 1 1
H_ﬁ(lq) (IIL.16)

Note that H is self-adjoint, H> = I (since H' = H). H can be defined also
in terms of the Pauli matrices: H = (X + Z)/v/2 (Exer. 111.28).

The H transform can be used to rotate the computational basis into the
sign basis and back (Exer. I11.27):

H(al0) +0[1)) = al+)+b|-),
H(a|+) +b|-)) = al0)+ b|1).

Alice and Bob could use this in QKD.

When applied to a |0), H generates an (equal-amplitude) superposition of
the two-bit values, H|0) = \O) f|1> This is a useful way of generating a
superposition of both pos&ble input bits, and the Walsh transform, a tensor

power of H, can be applied to a quantum register to generate a superposition
of all possible register values. Consider the n = 2 case:

H?[p,¢) = (H®H)(|Y) @ |¢))
= (HlY)) @ (H]9))
In particular,
H®|00) = (H|0)) ® (H|0))
— ‘ _|_>®2

Lo+ |1>>]

I
1

\/_
) (10 + [19)(10) + 1)

000>—+|01)—+|10>—+|11>)

-5
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Notice that this is an equal superposition of all possible values of the 2-qubit
register. (I wrote the amplitude in a complicated way, 1/v/22, to help you
see the general case.) In general,

HE |0y = jg_n(rm+\1>>®<|0>+|T>>®~~®<|0>+11>>
1

Note that “2™ —1" represents a string of n 1-bits, and that 2 = {0, 1}. Hence,
H®™|0)®" generates an equal superposition of all the 2" possible values of the
n-qubit register. We often write W,, = H®" for the Walsh transformation.

An linear operation applied to such a superposition state in effect applies
the operation simultaneously to all 2" possible input values. This is expo-
nential quantum parallelism and suggests that quantum computation might
be able to solve exponential problems much more efficiently than classical
computers. To see this, suppose Ulz) = |f(x)). Then:

2" -1 2" —1

oni0)en) = LZR_lx —L x—i x
U(H®="0)*") =U \/z_n;H]_\/ﬁ;UH_ﬁ;’f( )

This is a superposition of the function values f(x) for all of the 2" possible
values of x; it is computed by one pass through the operator U.



