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4.2 Examples
The use of simple quantum gates can be studied with two simple examples: dense coding
and teleportation.
Dense coding uses one quantum bit together with an EPR pair to encode and transmit

two classical bits. Since EPR pairs can be distributed ahead of time, only one qubit (parti-
cle) needs to be physically transmitted to communicate two bits of information. This result
is surprising since, as was discussed in section 3, only one classical bit’s worth of informa-
tion can be extracted from a qubit. Teleportation is the opposite of dense coding, in that
it uses two classical bits to transmit a single qubit. Teleportation is surprising in light of
the no cloning principle of quantum mechanics, in that it enables the transmission of an
unknown quantum state.
The key to both dense coding and teleportation is the use of entangled particles. The

initial set up is the same for both processes. Alice and Bob wish to communicate. Each is
sent one of the entangled particles making up an EPR pair,

�0 =
1p
2
(|00i + |11i).

Say Alice is sent the first particle, and Bob the second. So until a particle is transmit-
ted, only Alice can perform transformations on her particle, and only Bob can perform
transformations on his.

4.2.1 Dense Coding

Alice

Encoder

Bob

Decoder

EPR
source

Alice. Alice receives two classical bits, encoding the numbers 0 through 3. Depending
on this number Alice performs one of the transformations {I, X, Y, Z} on her qubit of the
entangled pair �0. Transforming just one bit of an entangled pair means performing the
identity transformation on the other bit. The resulting state is shown in the table.

Value Transformation New state
0 �0 = (I ⌦ I)�0

1�
2
(|00i + |11i)

1 �1 = (X ⌦ I)�0
1�
2
(|10i + |01i)

2 �2 = (Y ⌦ I)�0
1�
2
(�|10i + |01i)

3 �3 = (Z ⌦ I)�0
1�
2
(|00i � |11i)

Alice then sends her qubit to Bob.

Bob. Bob applies a controlled-NOT to the two qubits of the entangled pair.

Figure III.18: Superdense coding. (Rie↵el & Polak, 2000)

C.6 Applications

C.6.a Superdense coding

We will consider a couple simple applications of these ideas. The first is called
superdense coding or (more modestly) dense coding, since it is a method by
which one quantum particle can be used to transmit two classical bits of
information. It was described by Bennett and Wiesner in 1992, and was
partially validated experimentally by 1998.

Here is the idea. Alice and Bob share an entangled pair of qubits. To
transmit two bits of information, Alice applies one of four transformations
to her qubit. She then sends her qubit to Bob, who can apply an operation
to the entangled pair to determine which of the four transformations she
applied, and hence recover the two bits of information.

Now let’s work it through more carefully. Suppose Alice and Bob share
the entangled pair |�

00

i = 1p
2

(|00i + |11i). Since the four Bell states are a
basis for the quantum state of the pair of qubits, Alice’s two bits of infor-
mation can be encoded as one of the four Bell states. For example, Alice
can use the state |�zxi to encode the bits z, x (the correspondence is ar-
bitrary so long as we are consistent, but this one is easy to remember).
Recall the circuit for generating Bell states (Fig. III.13, p. 112). Its e↵ect
is CNOT(H ⌦ I)|zxi = |�zxi. This cannot be used by Alice for generating
the Bell states, because she doesn’t have access to Bob’s qubit. However,
the Bell states di↵er from each other only in the relative parity and phase
of their component qubits (i.e., whether they have the same or opposite bit
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values and the same or opposite signs). Therefore, Alice can alter the par-
ity and phase of just her qubit to transform the entangled pair into any of
the Bell states. In particular, if she uses zx to select I, X, Z, or ZX = Y
(corresponding to zx = 00, 01, 10, 11 respectively) and applies it to just her
qubit, she can generate the corresponding Bell state |�zxi. I’ve picked this
correspondence because of the simple relation between the bits z, x and the
application of the operators Z,X, but this is not necessary; any other 1-1
correspondence between the two bits and the four operators could be used.
When Alice applies this transformation to her qubit, Bob’s qubit is unaf-
fected, and so the transformation on the entangled pair is I ⌦ I, X ⌦ I,
Z ⌦ I, or ZX ⌦ I. We can check the results as follows:

bits transformation result
00 I ⌦ I 1p

2

(|00i + |11i) = |�
00

i
01 X ⌦ I 1p

2

(|10i + |01i) = |�
01

i
10 Z ⌦ I 1p

2

(|00i � |11i) = |�
10

i
11 ZX ⌦ I 1p

2

(�|10i + |01i) = |�
11

i

For example, in the second-to-last case, since Z|0i = |0i and Z|1i = �|1i,
we see Z ⌦ I

h
1p
2

(|00i + |11i)
i
= 1p

2

(|00i � |11i). Make sure you can explain

the results in the other cases (Exer. III.39).
When Alice wants to send her information, she applies the appropriate

operator to her qubit and sends her single transformed qubit to Bob, which
he uses with his qubit to recover the information by measuring the pair
of qubits in the Bell basis. This can be done by inverting the Bell state
generator, which, since the CNOT and H are self-adjoint, is simply:

(H ⌦ I)CNOT|�zxi = |zxi.

This translates the Bell basis into the computational basis, so Bob can mea-
sure the bits exactly.

C.6.b Quantum teleportation

Quantum teleportation is not quite as exciting as it sounds! Its goal is to
transfer the exact quantum state of a particle from Alice to Bob by means
a classical channel (Figs. III.19, III.20). Of course, the No Cloning Theorem
says we cannot copy a quantum state, but we can “teleport” it by destroying



C. QUANTUM INFORMATION 119

18 · E. Rieffel and W. Polak

Initial state Controlled-NOT First bit Second bit
�0 = 1�

2
(|00i + |11i) 1�

2
(|00i + |10i) 1�

2
(|0i + |1i) |0i

�1 = 1�
2
(|10i + |01i) 1�

2
(|11i + |01i) 1�

2
(|1i + |0i) |1i

�2 = 1�
2
(�|10i + |01i) 1�

2
(�|11i + |01i) 1�

2
(�|1i + |0i) |1i

�3 = 1�
2
(|00i � |11i) 1�

2
(|00i � |10i) 1�

2
(|0i � |1i) |0i

Note that Bob can now measure the second qubit without disturbing the quantum state.
If the measurement returns |0i then the encoded value was either 0 or 3, if the measurement
returns |1i then the encoded value was either 1 or 2.
Bob now appliesH to the first bit:

Initial state First bit H(First bit)
�0

1�
2
(|0i + |1i) 1�

2

�
1�
2
(|0i + |1i) + 1�

2
(|0i � |1i)

�
= |0i

�1
1�
2
(|1i + |0i) 1�

2

�
1�
2
(|0i � |1i) + 1�

2
(|0i + |1i)

�
= |0i

�2
1�
2
(�|1i + |0i) 1�

2

�
� 1�

2
(|0i � |1i) + 1�

2
(|0i + |1i)

�
= |1i

�3
1�
2
(|0i � |1i) 1�

2

�
1�
2
(|0i + |1i) � 1�

2
(|0i � |1i)

�
= |1i

Finally, Bob measures the resulting bit which allows him to distinguish between 0 and
3, and 1 and 2.

4.2.2 Teleportation. The objective is to transmit the quantum state of a particle using
classical bits and reconstruct the exact quantum state at the receiver. Since quantum state
cannot be copied, the quantum state of the given particle will necessarily be destroyed. Sin-
gle bit teleportation has been realized experimentally [Bouwmeester et al. 1997; Nielsen
et al. 1998; Boschi et al. 1998].

Alice Bob

Decoder Encoder

EPR
source

Alice. Alice has a qubit whose state she doesn’t know. She wants to send the state of ths
qubit

� = a|0i + b|1i
to Bob through classical channels. As with dense coding, Alice and Bob each possess one
qubit of an entangled pair

�0 =
1p
2
(|00i + |11i).

Figure III.19: Quantum teleportation. (Rie↵el & Polak, 2000)

Figure III.20: Possible setup for quantum teleportation. [from wikipedia
commons]
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the original and recreating it elsewhere. Single-qubit quantum teleportation
was described by Bennett in 1993 and first demonstrated experimentally in
the late 1990s.

This is how it works. Alice and Bob begin by sharing the halves of an
entangled pair, |�

00

i = 1p
2

(|00i+ |11i). Suppose that the quantum state that

Alice wants to share is | i = a|0i + b|1i. The composite system comprising
the unknown state and the Bell state is

| 
0

i def

= | , �
00

i

= (a|0i + b|1i) 1p
2
(|00i + |11i)

=
1p
2
[a|0i(|00i + |11i) + b|1i(|00i + |11i)]

=
1p
2
(a|0, 00i + a|0, 11i + b|1, 00i + b|1, 11i).

Alice applies the decoding circuit used for superdense coding to the unknown
state and her qubit from the entangled pair. This function is (H ⌦ I)CNOT;
it measures her two qubits in the Bell basis. When Alice applies CNOT to
her two qubits (leaviing Bob’s qubit alone) the resulting composite state is:

| 
1

i def

= (CNOT ⌦ I)| 
0

i

= (CNOT ⌦ I)


1p
2
(a|00, 0i + a|01, 1i + b|10, 0i + b|11, 1i)

�
=

1p
2
(a|00, 0i + a|01, 1i + b|11, 0i + b|10, 1i).

When she applies H ⌦ I to her qubits the result is:

| 
2

i def

= (H ⌦ I ⌦ I)| 
1

i

= (H ⌦ I ⌦ I)
1p
2
(a|0, 00i + a|0, 11i + b|1, 10i + b|1, 01i)

=
1

2
[a(|0, 00i + |1, 00i + |0, 11i + |1, 11i)
+b(|0, 10i � |1, 10i + |0, 01i � |1, 01i)] .

This is because H|0i = |+i = 1p
2

(|0i + |1i) and H|1i = |�i = 1p
2

(|0i � |1i).
Rearranging and factoring, we have:

| 
2

i =
1

2
[|00i(a|0i + b|1i) + |01i(a|1i + b|0i)
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+|10i(a|0i � b|1i) + |11i(a|1i � b|0i)] .

Thus the unknown amplitudes have been transferred from the first qubit
(Alice’s) to the third (Bob’s), which now incorporates the amplitudes a and
b, but in di↵erent ways depending on the first two bits. In fact you can see
that the amplitudes are transformed by the Pauli matrices. Therefore Alice
measures the first two bits (completing measurement in the Bell basis) and
sends them to Bob over the classical channel. This measurement partially
collapses the state, including Bob’s qubit, but in a way that is determined
by the first two qubits.

When Bob receives the two classical bits from Alice, he uses them to
select a transformation for his qubit, which restores the amplitudes to the
correct basis vectors. These transformations are the Pauli matrices (which
are their own inverses):

bits gate input
00 I a|0i + b|1i (identity)
01 X a|1i + b|0i (exchange)
10 Z a|0i � b|1i (flip)
11 ZX a|1i � b|0i (exchange–flip)

In each case, applying the specified gate to its input yields | i = a|0i+ b|1i,
Alice’s original quantum state. This is obvious in the 00 case, but you should
verify the others (Exer. III.40). Notice that since Alice had to measure her
qubits, the original quantum state of her particle has collapsed. Thus it has
been “teleported,” not copied.

The quantum circuit in Fig. III.21 is slightly di↵erent from what we’ve
described, since it uses the fact that the appropriate transformations can be
expressed in the form ZM1XM2 , where M

1

and M
2

are the two classical bits.
You should verify that ZX = Y (Exer. III.41).

Both superdense coding and teleportation indicate that under some cir-
cumstances two bits and an entangled pair can be interchanged with one
qubit. This is one example of a method of interchanging resources. However,
quantum teleportation does not allow faster-than-light communication, since
Alice has to transmit her two classical bits to Bob.

Entangled states can be teleported in a similar way. Free-space quantum
teleportation has been demonstrated over 143 km between two of the Canary
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Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom
line is Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical
bits (recall that single lines denote qubits).

=
1p
2

h
�|0i(|00i + |11i) + �|1i(|00i + |11i)

i
, (1.29)

where we use the convention that the first two qubits (on the left) belong to Alice, and
the third qubit to Bob. As we explained previously, Alice’s second qubit and Bob’s qubit
start out in an EPR state. Alice sends her qubits through a gate, obtaining

|�1i =
1p
2

h
�|0i(|00i + |11i) + �|1i(|10i + |01i)

i
. (1.30)

She then sends the first qubit through a Hadamard gate, obtaining

|�2i =
1
2

h
�(|0i + |1i)(|00i + |11i) + �(|0i � |1i)(|10i + |01i)

i
.

(1.31)

This state may be re-written in the following way, simply by regrouping terms:

|�2i =
1
2

h
|00i

�
�|0i + �|1i

�
+ |01i

�
�|1i + �|0i

�
+ |10i

�
�|0i � �|1i

�
+ |11i

�
�|1i � �|0i

�i
. (1.32)

This expression naturally breaks down into four terms. The first term has Alice’s qubits
in the state |00i, and Bob’s qubit in the state �|0i + �|1i – which is the original state
|�i. If Alice performs a measurement and obtains the result 00 then Bob’s system will
be in the state |�i. Similarly, from the previous expression we can read off Bob’s post-
measurement state, given the result of Alice’s measurement:

00 7�! |�3(00)i �
h
�|0i + �|1i

i
(1.33)

01 7�! |�3(01)i �
h
�|1i + �|0i

i
(1.34)

10 7�! |�3(10)i �
h
�|0i � �|1i

i
(1.35)

11 7�! |�3(11)i �
h
�|1i � �|0i

i
. (1.36)

Depending on Alice’s measurement outcome, Bob’s qubit will end up in one of these
four possible states. Of course, to know which state it is in, Bob must be told the result of
Alice’s measurement – we will show later that it is this fact which prevents teleportation

Figure III.21: Circuit for quantum teleportation. [from Nielsen & Chuang
(2010)]

Islands (Nature, 13 Sept. 2012).6 In Sept. 2015 teleportation was achieved
over 101 km through supercooled nanowire. For teleporting material systems,
the current record is 21 m.

C.7 Universal quantum gates

We have seen several interesting examples of quantum computing using gates
such as CNOT and the Hadamard and Pauli operators.7 Since the imple-
mentation of each of these is a technical challenge, it raises the important
question: What gates are su�cient for implementing any quantum compu-
tation?

Both the Fredkin (controlled swap) and To↵oli (controlled-controlled-
NOT) gates are su�cient for classical logic circuits. In fact, they can op-
erate as well on qubits in superposition. But what about other quantum
operators?

It can be proved that single-qubit unitary operators can be approximated
arbitrarily closely by the Hadamard gate and the T (⇡/8) gate, which is
defined:

T =

✓
1 0
0 ei⇡/4

◆
⇠=

✓
e�i⇡/8 0
0 ei⇡/8

◆
(III.19)

(ignoring global phase). To approximate within ✏ any single-qubit unitary

6http://www.nature.com/nature/journal/v489/n7415/full/nature11472.html
(accessed 12-09-18).

7This lecture follows Nielsen & Chuang (2010, §4.5).
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operation, you need O(logc(1/✏)) gates, where c ⇡ 2. For an m-gate circuit
(of CNOTs and single-qubit unitaries) and an accuracy of ✏, O(m logc(m/✏)),
where c ⇡ 2, gates are needed (Solovay-Kitaev theorem).

A two-level operation is a unitary operator on a d-dimensional Hilbert
space that non-trivially a↵ects only two qubits out of n (where d = 2n).
It can be proved that any two-level unitary operation can be computed by
a combination of CNOTs and single-qubit operations. This requires O(n2)
single-qubit and CNOT gates.

It also can be proved that an arbitrary d-dimensional unitary matrix
can be decomposed into a product of two-level unitary matrices. At most
d(d� 1)/2 of them are required. Therefore a unitary operator on an n-qubit
system requires at most 2n�1(2n � 1) two-level matrices.

In conclusion, the H (Hadamard), CNOT, and ⇡/8 gates are su�cient
for quantum computation. For fault-tolerance, either the standard set —
H (Hadamard), CNOT, ⇡/8, and S (phase) — can be used, or H, CNOT,
To↵oli, and S. The latter phase gate is defined:

S = T 2 =

✓
1 0
0 i

◆
. (III.20)


