
D. QUANTUM ALGORITHMS 135

D.3 Shor’s algorithm

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.
— Jennifer and Peter Shor (Nielsen & Chuang, 2010, p. 216)

The widely used RSA public-key cryptography system is based on the di�-
culty of factoring large numbers.10 The best classical algorithms are nearly
exponential in the size of the input, m = lnM . Specifically, the best
current (2006) algorithm (the number field sieve algorithm) runs in time
eO(m1/3

ln

2/3 m). This is subexponential but very ine�cient. Shor’s quantum
algorithm is bounded error-probability quantum polynomial time (BQP),
specifically, O(m3). Shor’s algorithm was invented in 1994, inspired by Si-
mon’s algorithm.

Shor’s algorithm reduces factoring to finding the period of a function.
The connection between factoring and period finding can be understood as
follows. Assume you are trying to factor M . Suppose you can find x such
that x2 = 1 (mod M). Then x2 �1 = 0 (mod M). Therefore (x+1)(x�1) =
0 (mod M). Therefore both x + 1 and x � 1 have common factors with M
(except in the trivial case x = 1, and so long as neither is a multiple of M).
Now pick an a that is coprime (relatively prime) to M . If ar = 1 (mod M)
and r happens to be even, we’re done (since we can find a factor of M as
explained above). (The smallest such r is called the order of a.) This r is
the period of ax (mod M), since ax+r = axar = ax (mod M).

In summary, if we can find the order of an appropriate a and it is even,
then we can probably factor the number. To accomplish this, we need to
find the period of ax (mod M), which can be determined through a Fourier
transform.

Like the classical Fourier transform, the quantum Fourier transform puts
all the amplitude of the function into multiples of the frequency (reciprocal
period). Therefore, measuring the state yields the period with high proba-
bility.

10These section is based primarily on Rie↵el & Polak (2000).

136 CHAPTER III. QUANTUM COMPUTATION

D.3.a Quantum Fourier transform

Before explaining Shor’s algorithm, it’s necessary to explain the quantum
Fourier transform, and to do so it’s helpful to begin with a review of the
classical Fourier transform.

Let f be a function defined on [0, 2⇡). We know it can be represented as
a Fourier series,

f(x) =
a

0

2
+

1X
k=1

(ak cos kx+ bk sin kx) =
A

0

2
+

1X
k=1

Ak cos(kx+ �k),

where k = 0, 1, 2, . . . represents the overtone series (natural number multiples
of the fundamental frequency). You know also that the Fourier transform
can be represented in the ciscoid (sine and cosine) basis, where we define

uk(x)
def

= cis(�kx) = e�ikx. (The “�” sign is irrelevant, but will be convenient
later.) The uk are orthogonal but not normalized, so we divide them by
2⇡, since

R
2⇡

0

cos2 x + sin2 x dx = 2⇡. The Fourier series in this basis is

f(x) =
P1

k=�1 f̂k cis(�kx). The Fourier coe�cients are given by f̂k = 1

2⇡
huk |

fi = 1

2⇡

R
2⇡

0

eikxf(x)dx. They give the amplitude and phase of the component
signals uk.

For the discrete Fourier transform (DFT) we suppose that f is repre-

sented by N samples, fj
def

= f(xj), where xj = 2⇡ j
N
, with j 2 N

def

=
{0, 1, . . . , N � 1}. Let f = (f

0

, . . . , fN�1

)T. Note that the xj are the 1/N
segments of a circle. (Realistically, N is big.)

Likewise each of the basis functions is represented by a vector of N sam-

ples: uk
def

= (uk,0, . . . , uk,N�1

)T. Thus we have a matrix of all the basis sam-
ples:

ukj
def

= cis(�kxj) = e�2⇡ikj/N , j 2 N.

In e�2⇡ikj/N , note that 2⇡i represents a full cycle, k is the overtone, and j/N
represents the fraction of a full cycle.

Recall that every complex number has N principal N th-roots, and in
particular the number 1 (unity) has N principal N th-roots. Notice that N
samples of the fundamental period correspond to the N principal N th-roots
of unity, that is, !j where (for a particular N) ! = e2⇡i/N . Hence, ukj = !�kj.
That is, uk = (!�k·0,!�k·1 . . . ,!�k·(N�1))T. It is easy to show that the vectors
uk are orthogonal, and in fact that uk/

p
N are ON (exercise). Therefore, f

D. QUANTUM ALGORITHMS 137

can be represented by a Fourier series,

f =
1p
N

X
k2N

f̂kuk =
1

N

X
k2N

(u†
kf)uk.

Define the discrete Fourier transform of the vector f , f̂ = Ff , to be the
vector of Fourier coe�cients, f̂k = u†

kf/
p
N . Determine F as follows:

f̂ =

0BBB@
f̂

0

f̂
1

...
f̂N�1

1CCCA =
1p
N

0BBB@
u†

0

f
u†

1

f
...

u†
N�1

f

1CCCA =
1p
N

0BBB@
u†

0

u†
1

...
u†

N�1

1CCCA f .

Therefore let

F
def

=
1p
N

0BBB@
u†

0

u†
1

...
u†

N�1

1CCCA =
1p
N

0BBBBB@
!0·0 !0·1 · · · !0·(N�1)

!1·0 !1·1 · · · !1·(N�1)

!2·0 !2·1 · · · !2·(N�1)

...
...

. . .
...

!(N�1)·0 !(N�1)·1 · · · !(N�1)·(N�1)

1CCCCCA .

(III.25)
That is, Fkj = ukj/

p
N = !kj/

p
N for k, j 2 N. Note that the “�” signs in

the complex exponentials were eliminated by the conjugate transpose. F is
unitary transformation (exercise).

The fast Fourier transform (FFT) reduces the number of operations re-
quired from O(N2) to O(N logN).11 It does this with a recursive algorithm
that avoids recomputing values. However, it is restricted to powers of two,
N = 2n.

The quantum Fourier transform (QFT) is even faster, O(log2 N), that is,
O(n2). However, because the spectrum is encoded in the amplitudes of the
quantum state, we cannot get them all. Like the FFT, the QFT is restricted
to powers of two, N = 2n. The QFT transforms the amplitudes of a quantum
state:

U
QFT

X
j2N

fj|ji =
X
k2N

f̂k|ki,

11The FFT is O(N log N), but N > M

2 = e

2m. Therefore the FFT is O(M2 log M

2) =
O(M2 log M) = O(me

2m)

138 CHAPTER III. QUANTUM COMPUTATION

where f̂
def

= Ff .
Suppose f has period r, and suppose that the period evenly divides the

number of samples, r | N . Then all the amplitude of f̂ should be at multiples
of its fundamental frequency, N/r. If r 6 | N , then the amplitude will be
concentrated near multiples of N/r. The approximation is improved by using
larger n.

The FFT (and QFT) are implemented in terms of additions and multi-
plications by various roots of unity (powers of !). In QFT, these are phase
shifts. In fact, the QFT can be implemented with n(n + 1)/2 gates of two
types: (1) One is Hj, the Hadamard transformation of the jth qubit. (2) The
other is a controlled phase-shift Sj,k, which uses qubit xj to control whether
it does a particular phase shift on the |1i component of qubit xk. That is,
Sj,k|xjxki 7! |xjx

0
ki is defined by

Sj,k
def

= |00ih00| + |01ih01| + |10ih10| + ei✓k�j |11ih11|,

where ✓k�j = ⇡/2k�j. That is, the phase shift depends on the indices j and
k.

It can be shown that the QFT can be defined:12

U
QFT

=
n�1Y
j=0

Hj

n�1Y
k=j+1

Sj,k.

This is O(n2) gates.

D.3.b Shor’s algorithm step by step

Shor’s algorithm depends on many results from number theory, which are
outside of the scope of this course. Since this is not a course in cryptography
or number theory, I will just illustrate the ideas.

algorithm Shor:

12See Rie↵el & Polak (2000) for this, with a detailed explanation in Nielsen & Chuang
(2010, §5.1, pp. 517–21).

D. QUANTUM ALGORITHMS 139

Input: Suppose we are factoring M (and M = 21 will be used for con-
crete examples, but of course the goal is to factor very large numbers). Let

m
def

= dlgMe = 5 in the case M = 21.

Step 1: Pick a random number a < M . If a and M are not coprime (rela-
tively prime), we are done. (Euclid’s algorithm is O(m2) = O(log2 M).) For
our example, suppose we pick a = 11, which is relatively prime with 21.

Modular exponentiation: Let g(x)
def

= ax (mod M), for x 2 M
def

=
{0, 1, . . . ,M � 1}. This takes O(m3) gates and is the most complex part
of the algorithm! (Reversible circuits typically use m3 gates for m qubits.)
In our example case, g(x) = 11x (mod 21), so

g(x) = 1, 11, 16, 8, 4, 2,| {z }
period

1, 11, 16, 8, 4, . . .

In order to get a good QFT approximation, pick n such thatM2  2n < 2M2.

Let N
def

= 2n. Equivalently, pick n such that 2 lgM  n < 2 lgM + 1, that
is, roughly twice as many qubits as in M . Note that although the number
of samples is N = 2n, we need only n qubits (thanks to the tensor product).
This is where quantum computation gets its speedup over classical compu-
tation; M is very large, so N > M2 is extremely large. The QFT computes
all these in parallel. For our example M = 21, and so we pick n = 9 for
N = 512 since 441  512 < 882. Therefore m = 5.

Step 2 (quantum parallelism): Apply Ug to the superposition

|
0

i def

= H⌦n|0i⌦n =
1p
N

X
x2N

|xi

to get

|
1

i def

= Ug| 0

i|0i⌦m =
1p
N

X
x2N

|x, g(x)i.

For our example problem, 14 qubits are required [n = 9 for x and m = 5 for
g(x)]. The quantum state looks like this (note the periodicity):

|
1

i = 1p
512

(|0, 1i + |1, 11i + |2, 16i + |3, 8i + |4, 4i + |5, 2i +

140 CHAPTER III. QUANTUM COMPUTATION

|6, 1i + |7, 11i + |8, 16i + |9, 8i + |10, 4i + |11, 2i + · · ·)

Step 3 (measurement): The function g has a period r, which we want
to transfer to the amplitudes of the state so that we can apply the QFT.
This is accomplished by measuring (and discarding) the result register (as
in Simon’s algorithm).13 Suppose the result register collapses into state g⇤

(e.g., g⇤ = 8). The input register will collapse into a superposition of all x
such that g(x) = g⇤. We can write it:

|
2

i def

=
1

Z
X

x2N s.t. g(x)=g⇤

|x, g⇤i = 1

Z
X
x2N

fx|x, g⇤i =
"
1

Z
X
x2N

fx|xi
#

|g⇤i,

where

fx
def

=

⇢
1, if g(x) = g⇤

0, otherwise
,

and Z def

=
p

|{x | g(x) = g⇤}| is a normalization factor. For example,

|
2

i =
1

Z (|3, 8i + |9, 8i + |15, 8i + · · ·)

=
1

Z (|3i + |9i + |15i + · · ·)|8i

Note that the values x for which fx 6= 0 di↵er from each other by the period;
This produces a function f of very strong periodicity. As in Simon’s algo-
rithm, if we could measure two such x, we would have useful information,
but we can’t. Suppose we measure the result register and get g⇤ = 8. Fig.
III.24 shows the corresponding f = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, . . .).

Step 4 (QFT): Apply the QFT to obtain,

|
3

i def

= U
QFT

1

Z
X
x2N

fx|xi
!

=
1

Z
X
x̂2N

f̂x̂|x̂i.

13As it turns out, this measurement of the result register can be avoided. This is in
general true for “internal” measurement processes in quantum algorithms (Bernstein &
Vazirani 1997).

D. QUANTUM ALGORITHMS 141
26 · E. Rieffel and W. Polak

0.0

0.0012

0.0024

0.0036

0.0048

0.006

0.0072

0.0084

0.0096

0.0108

0.012

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring x when measuring the state C
P

x�X
|x, 8� obtained in Step 2, where

X = {x|211x mod 21 = 8}}

0.0

0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.17

0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m
/r. When the period r does not divide

2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m

/r, the period is easy
to extract. In this case, v = j

2m

r for some j. Most of the time j and r will be relatively

Figure III.24: Example probability distribution |fx|2 for state
Z�1

P
x2N

fx|x, 8i. In this example the period is r = 6 (e.g., at
x = 3, 9, 15, . . .). [fig. source: Rie↵el & Polak (2000)]

26 · E. Rieffel and W. Polak

0.0

0.0012

0.0024

0.0036

0.0048

0.006

0.0072

0.0084

0.0096

0.0108

0.012

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring x when measuring the state C
P

x�X
|x, 8� obtained in Step 2, where

X = {x|211x mod 21 = 8}}

0.0

0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.17

0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m
/r. When the period r does not divide

2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m

/r, the period is easy
to extract. In this case, v = j

2m

r for some j. Most of the time j and r will be relatively

Figure III.25: Example probability distribution |f̂x̂|2 of the quantum Fourier
transform of f . The spectrum is concentrated near multiples of N/6 =
512/6 = 85 1/3, that is 85 1/3, 170 2/3, 256, etc. [fig. source: Rie↵el &
Polak (2000)]

142 CHAPTER III. QUANTUM COMPUTATION

(The collapsed result register |g⇤i has been omitted.)
If the period r divides N = 2n, then f̂ will be nonzero only at multiples

of the fundamental frequency N/r. That is, the nonzero components will be
|kN/ri. If it doesn’t divide evenly, then the amplitude will be concentrated
around these |kN/ri. See Fig. III.24 and Fig. III.25 for examples of the
probability distributions |fx|2 and |f̂x̂|2.

Step 5 (period extraction): Measure the state in the computational basis.

Period a power of 2: If r | N , then the resulting state will be v
def

= |kN/ri
for some k 2 N. Therefore k/r = v/N . If k and r are relatively prime, as is
likely, then reducing the fraction v/N to lowest terms will produce r in the
denominator. In this case the period is discovered.

Period not a power of 2: In the case r does not divide N , it’s often pos-
sible to guess the period from a continued fraction expansion of v/N .14 If
v/N is su�ciently close to p/q, then a continued fraction expansion of v/N
will contain the continued fraction expansion of p/q. For example, suppose
the measurement returns v = 427, which is not a power of two. This is the
result of the continued fraction expansion of v/N (in this case, 427/512) (see
IQC):

i ai pi qi ✏i
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

“which terminates with 6 = q
2

< M  q
3

. Thus, q = 6 is likely to be the
period of f .” [IQC]

Step 6 (finding a factor): The following computation applies however we

14See Rie↵el & Polak (2000, App. B) for an explanation of this procedure and citations
for why it works.

D. QUANTUM ALGORITHMS 143

got the period q in Step 5. If the guess q is even, then aq/2 + 1 and aq/2 � 1
are likely to have common factors with M . Use the Euclidean algorithm to
check this. The reason is as follows. If q is the period of g(x) = ax (mod M),
then aq = 1 (mod M). This is because, if q is the period, then for all x,
g(x + q) = g(x), that is, aq+x = aqax = ax (mod M) for all x. Therefore
aq � 1 = 0 (mod M). Hence,

(aq/2 + 1)(aq/2 � 1) = 0 (mod M).

Therefore, unless one of the factors is a multiple of M (and hence = 0 mod
M), one of them has a nontrivial common factor with M .

In the case of our example, the continued fraction gave us a guess q = 6, so
with a = 11 we should consider 113+1 = 1332 and 113 �1 = 1330. For M =
21 the Euclidean algorithm yields gcd(21, 1332) = 3 and gcd(21, 1330) = 7.
We’ve factored 21!

Iteration: There are several reasons that the preceding steps might not have
succeeded: (1) The value v projected from the spectrum might not be close
enough to a multiple of N/r (D.3.b). (2) In D.3.b, k and r might not be
relatively prime, so that the denominator is only a factor of the period, but
not the period itself. (3) In D.3.b, one of the two factors turns out to be a
multiple of M . (4) In D.3.b, q was odd. In these cases, a few repetitions of
the preceding steps yields a factor of M .
⇤

D.3.c Recent progress

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.
— Volker Strassen (Nielsen & Chuang, 2010, p. 216)

In this section we review recent progress in hardware implementation of

144 CHAPTER III. QUANTUM COMPUTATION

Figure III.26: Hardware implementation of Shor’s algorithm developed at
UCSB (2012). The Mj are quantum memory elements, B is a quantum
“bus,” and the Qj are phase qubits that can be used to implement qubit
operations between the bus and memory elements. [source: CPF]

Figure III.27: Circuit of hardware implementation of Shor’s algorithm devel-
oped at UCSB. [source: CPF]

D. QUANTUM ALGORITHMS 145

Shor’s algorithm.15 In Aug. 2012 a group at UC Santa Barbara described
a quantum implementation of Shor’s algorithm that correctly factored 15
about 48% of the time (50% being the theoretical success rate). (There have
been NMR hardware factorizations of 15 since 2001, but there is some doubt
if entanglement was involved.) This is a 3-qubit compiled version of Shor’s
algorithm, where “compiled” means that the implementation of modular ex-
ponentiation is for fixed M and a. This compiled version used a = 4 as the
coprime to M = 15. In this case the correct period r = 2. c The device
(Fig. III.26) has nine quantum devices, including four phase qubits and five
superconducing co-planar waveguide (CPW) microwave resonators. The four
CPWs (Mj) can be used as memory elements and fifth (B) can be used as a
“bus” to mediate entangling operations. In e↵ect the qubits Qj can be read
and written. Radio frequency pulses in the bias coil can be used to adjust the
qubit’s frequency, and gigahertz pulses can be used to manipulate and mea-
sure the qubit’s state. SQUIDs are used for one-shot readout of the qubits.
The qubits Qj can be tuned into resonance with the bus B or memory ele-
ments Mj. The quantum processor can be used to implement the single-qubit
gates X, Y, Z,H, and the two-qubit swap (iSWAP) and controlled-phase (C�)
gates. The entanglement protocol can be scaled to an arbitrary number of
qubits. The relaxation and dephasing times are about 200ns.

Another group has reported the quantum factoring of 21.16 Their pro-
cedure operates by using one qubit instead of the n qubits in the (upper)
control qubits. It does this by doing all the unitaries associated with the
lowest-order control qubit, then for the next control qubit, updating the
work register after each step, for n interations.

15This section is based primarily on Erik Lucero, R. Barends, Y. Chen, J. Kelly, M.
Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y.
Yin, A. N. Cleland & John M. Martinis, “Computing prime factors with a Josephson phase
qubit quantum processor.” Nature Physics 8, 719–723 (2012) doi:10.1038/nphys2385
[CPF].

16See Martin-Lópex et al., “Experimental realization of Shor’s quantum factoring algo-
rithm using qubit recycling,” Nature Photonics 6, 773–6 (2012).

