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G Quantum probability in cognition

There are interesting connections between the mathematics of quantum me-
chanics and information processing in the brain. This is not so remarkable
when we recall that the foundations of quantum mechanics are matters of
information and knowledge.28

G.1 Theories of decision making

How do people make decisions under uncertainty? There have been three
major phases of models.

(i) Logic. From Aristotle’s time, the most common model of human
thinking has been formal logic, especially deductive logic. For example, the
title of George Boole’s book, in which he introduced Boolean algebra, was
called The Laws of Thought, and that is what he supposed it to be. The first
AI program (1956) was the Logic Theorist, and formal deductive logic
still dominates many AI systems. Since the 1960s, however, there has been
accumulating psychological evidence that classical logic is not a good model
of everyday reasoning.

An additional, more technical problem is that classical logic is monotonic,
that is, the body of derived theorems can only increase. But everyday rea-
soning is nonmonotonic: propositions that were previously taken to be true
can become false (either because the facts have changed or an assumption has
been invalidated. As a consequence, the body of truths can shrink or change
in other ways. Existing truths can be nullified. An additional problem is that
much of our reasoning is inductive rather than deductive, that is, it moves
from more particular premises to more general conclusions, rather than vice
versa, as deductive logic does. But after many years of research, there really
isn’t an adequate inductive logic that accounts for scientific reasoning as well
as everyday generalization.

(ii) Classical probability (CP). The most common models of human
decision making have been based on classical probability theory (CP) and
Bayesian inference. Amos Tversky and Daniel Kahneman were pioneers
(from the 1970s) in the study of how people actually make decisions and
judgments. (In 2002 Kahneman recieved the Nobel Prize in Economics for

28This chapter is based primarily on Emmanuel M. Pothos and Jerome R. Busemeyer,
“Can quantum probability provide a new direction for cognitive modeling?” Behavioral

and Brain Sciences (Pothos & Busemeyer, 2013), including MacLennan (2013).
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this work; Tversky had already died.) Since then many other psychologists
have confirmed and extended their findings. They concluded that every-
day human reasoning follows the laws of neither classical logic nor classical
probability theory. “Many of these findings relate to order/context e↵ects,
violations of the law of total probability (which is fundamental to Bayesian
modeling), and failures of compositionality.” (Pothos & Busemeyer, 2013)

(iii) Quantum probability (QP). The mathematics of quantum me-
chanics provides an alternative system (axiomatization) of probability which
has the potential to account for these violations of CP, as we will see. Note
that QP is just a probability theory; there is no presumption that physical
quantum phenomena are significant in the brain (although they might be).
In this sense, our brains appear to be using a kind of quantum computation.

G.2 Framework

G.2.a Questions & outcomes

Just as CP begins by defining a sample space, QP begins by defining a Hilbert
space, which defines all possible answers that could be produced for all possi-
ble questions (addressed by the model). Corresponding to the quantum state
is the cognitive state, which you can think of as the indeterminate state of the
brain before there is a decision or determination to act in some way (such as
answering a question). Corresponding to observables in quantum mechanics,
we have questions in QP. More generally, we might refer to quandries, that
is, unsettled dispositions to act. Corresponding to projectors into subspaces
we have decisions. Often the subspaces are one-dimensional, that is, rays.

G.2.b Happiness example

Consider asking a person whether they are happy or not. Before asking the
question, they might be in an indefinite (superposition) state (Fig. III.43(a)):

| i = a|happyi + b|unhappyi.

It is not just that we do not know whether the person is happy or not; rather
the person “is in an indefinite state regarding happiness, simultaneously en-
tertaining both possibilities, but being uncommitted to either” (Pothos &
Busemeyer, 2013). More realistically “happy” and “unhappy” are likely to
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 (this is called Lüder’s law).  

 

It is clear that the definition of conditional probability in QP theory is analogous 

to that in CP theory, but for potential order effects in the sequential projection PAPB, 

when A and B are incompatible. 
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Figure 1. An illustration of basic processes in QP theory. In Figure 1b, all vectors are co-
planar, and the figure is a two-dimensional one. In Figure 1c, the three vectors “Happy, 
employed,” “Happy, unemployed,” and “Unhappy, employed” are all orthogonal to each 
other, so that the figure is a three-dimensional one.  (The fourth dimension, “unhappy, 
unemployed” is not shown). 
 
 

 The magnitude of a projection depends upon the angle between the corresponding 

subspaces. For example, when the angle is large, a lot of amplitude is lost between 

successive projections. As can be seen in Figure 1b, 

 

Figure III.43: “An illustration of basic processes in QP theory. In Figure
[b], all vectors are coplanar, and the figure is a two-dimensional one. In
Figure [c], the three vectors ‘Happy, employed’, ‘Happy, unemployed’, and
‘Unhappy, employed’ are all orthogonal to each other, so that the figure is
a three-dimensional one. (The fourth dimension, ‘unhappy, unemployed’ is
not shown).” (Pothos & Busemeyer, 2013)
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be complex subspaces, not rays, but for the sake of the example, we use a
2D outcome space.

Asking the question is equivalent to measuring the state in the “happiness
basis,” which comprises two projectors P

happy

and P
unhappy

:

P
happy

= |happyihhappy|,
P

unhappy

= |unhappyihunhappy|.

The probability that the person responds “happy” is, as expected:

kP
happy

| ik2 = k|happyihhappy |  ik2 = |a|2.

Measurement (decision) collapses the indefinite state to a definite basis state,
|happyi, with probability |a|2. The judgment or decision is not just a “read
out”; it is constructed from the state and the question, which actively disam-
biguates the superposition state.

G.2.c Incompatibility

As in quantum mechanics, questions can be compatible or incompatible. In
fact, Neils Bohr borrowed the notion of incompatible questions from the psy-
chologist William James. Compatible questions can be asked in any order;
they commute; incompatible questions do not commute.

In CP it is always possible to specify a joint probability distribution over
the four possible pairs of answers (the unicity principle). In QP you can do
this for compatible questions, but not for incompatible ones. Psychologically,
in the incompatible case the person cannot form a single thought for all
combinations of possible outcomes (because they are linearly dependent).
In the incompatible case, asking the first question alters the context of the
second question, and thus a↵ects its answer. Therefore, in applying QP in
psychology, we can ask whether one decision is likely to a↵ect the other.

Suppose we are going to ask a person two questions, whether they are
happy or not and whether they are employed or not. It is plausible that
happiness and employment are related, so we postulate a single 2D space
spanned by both bases (Fig. III.43(b)). The angle between the two bases
reflects the fact that happiness is likely to be correlated to employment.
Notice that once we get an answer regarding happiness, we will be in an
indefinite state regarding employment, and vice versa.
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Suppose we ask if the subject is employed and then ask if they are happy.
The probability that they answer “yes” to both is given by:29

P{employed && happy} = P{employed} ⇥ P{happy | employed}.

The rules of QP give the first probability: P{employed} = kP
employed

| ik2.
Asking about employment has collapsed the state, which is now

| 
employed

i = P
employed

| i
kP

employed

| ik .

The probability of a happy response is then

P{happy | employed} = kP
happy

| 
employed

ik2.

Hence the probability of the two responses is

P{employed && happy} = kP
happy

P
employed

| ik2.

From this example, we can see that the law for conditional probability in
QP, called Lüder’s Law, is:

P{A | B} =
kPAPB| ik2

kPB| ik2

=
P{B && A}

P{B} .

Look at Fig. III.43(b). You can see that

P{happy} < P{employed && happy},

which cannot happen in CP (since P{A} � P{A ^ B} always). The psy-
chological interpretation would be that the subject’s consciousness of be-
ing employed makes her more likely to say she is happy. This is because
happiness and employment are correlated, but this correlation does not af-
fect the outcome without the prior question about employment. In general,
P{A && B} 6= P{B && A}, which cannot happen in CP. That is, conjunc-
tion is not commutative. You can see

P{happy && employed} < P{employed && happy}.

This is because the subject was more uncertain about their happiness than
their employment, and therefore the state vector lost a lot of its amplitude

29As in C++, “ && ” should be read “and then” (sequential “and”).



182 CHAPTER III. QUANTUM COMPUTATION

via its projection first onto |happyi. “The size of such angles and the relative
dimensionality of the subspaces are the cornerstones of QP cognitive models
and are determined by the known psychology of the problem. These angles
(and the initial state vector) have a role in QP theory analogous to that
of prior and conditional distributions in Bayesian modeling.” (Pothos &
Busemeyer, 2013)

G.2.d Compatible questions

Fig. III.43(c) displays the case where the questions are compatible (only
three of the four basis vectors are shown). In this case we have a tensor
product between the space spanned by {|happyi, |unhappyi} and the space
spanned by {|employedi, |unemployedi}. For compatible questions the states
are composite vectors, e.g.,

|Hi = ⌘|happyi + ⌘0|unhappyi,
|Ei = ✏|employedi + ✏0|unemployedi,
| i = |Hi ⌦ |Ei

= ⌘✏|happyi|employedi + ⌘✏0|happyi|unemployedi
+⌘0✏|unhappyi|employedi + ⌘0✏0|unhappyi|unemployedi.

Then, for example, as in CP the joint probability

P{happy ^ employed} = |⌘✏|2 = P{happy}P{employed}.

G.2.e Structured representations and entanglement

Many concepts seem to have structured representations, that is, components,
properties, or attributes,, which are “aligned” when concepts are compared.30

Structured concepts are naturally represented in QP by tensored spaces rep-
resenting the concept’s components. However QP also permits entangled
(non-product) states, such as

↵|happyi|employedi + �|unhappyi|unemployedi.
This represents a state in which happiness and employment are strongly
interdependent. It represents a stronger degree of dependency than can be
expressed in CP. In CP you can construct a complete joint probability out
of pairwise joints, but this is not possible in QP.

30Think of the variable components (fields) of a C++ class.
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Figure 2. An illustration of the QP explanation for the conjunction fallacy.  

 
 
3.2. Failures of commutativity in decision making  

We next consider failures of commutativity in decision making, whereby asking the same 

two questions in different orders can lead to changes in response (Feldman & Lynch 

1988; Schuman & Presser 1981; Tourangeau et al. 1991). Consider the questions “Is 

Clinton honest?” and “Is Gore honest?” and the same questions in a reverse order. When 

the first two questions were asked in a Gallup poll, the probabilities of answering yes for 

Clinton and Gore were 50% and 68%, respectively. The corresponding probabilities for 

asking the questions in the reverse order were, by contrast, 57% and 60% (Moore 2002). 

Such order effects are puzzling according to CP theory, because, as noted, the probability 

of saying yes to question A and then yes to question B equals  

Figure III.44: Hypothetical basis state space of the “Linda experiment.”
(Pothos & Busemeyer, 2013)

G.2.f Time evolution

Time evolution is CP is defined by “a transition matrix (the solution to Kol-
mogorov’s forward equation)” (Pothos & Busemeyer, 2013). It transforms
the probabilities without violating the law of total probability. In QP am-
plitudes change by a unitary transformation.

G.3 Experimental evidence

The “Linda experiment.” In 1983 Tversky and Kahneman reported on
experiments in which subjects read a description of a hypothetical person
named Linda that suggested she was a feminist. Subjects were asked to
compare the probability of two statements: “Linda is a bank teller” (ex-
tremely unlikely given Linda’s description), and “Linda is a bank teller and
a feminist.” Most subjects concluded:

P{bank teller} < P{bank teller ^ feminist},

which violates CP; it is an example of the conjunction fallacy. Many experi-
ments of this sort have shown that everyday reasoning commits this fallacy.
Tversky and Kahneman proposed that people use heuristics rather than for-
mal CP, but it can also be explained by QP.
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The actual QP theory model developed for such failures in commutativity was 

based on the abovementioned idea, but was more general, so as to provide a parameter 

free test of the relevant empirical data (e.g., there are various specific types of order 

effects; Wang & Busemeyer, under review). 
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Figure 3. An illustration of order effects in Gallup polls.  

 

A related failure of commutativity concerns the order of assessing different pieces 

of evidence for a particular hypothesis. According to CP theory, the order in which 

evidence A and B is considered, in relation to a hypothesis H, is irrelevant, as 

 

Prob(H|A∧B)= Prob (H|B∧A). 

 

However, there have been demonstrations that, in fact,  

 

Figure III.45: Example of order e↵ects in Gallop polls. [fig. from PB]

The QP explanation is as follows. We suppose that the written descrip-
tion makes it a priori likely that Linda is a feminist and unlikely that she is
a bank teller; these priors are depicted in Fig. III.44. However, notice that
being a feminist is largely independent of being a bank teller. In making a
judgment like “Linda is a bank teller and a feminist” it is supposed that it is a
sequential conjunction, with the most likely judgment evaluated first, in this
case, “feminist && bank teller.” Look at the figure. The green projection
onto |feministi and then onto |bank telleri is longer than the blue projection
directly onto |bank telleri. Projection can be thought of as an abstraction
process, and so the projection of Linda onto |feministi throws away details
about her (it stereotypes her, we might say), and makes it more likely that
she is a bank teller (since there is not a strong correlation between feminists
and bank tellers). This may be compared to decoherence and loss of informa-
tion in a quantum system. “In general, QP theory does not always predict
an overestimation of conjunction. However, given the details of the Linda
problem, an overestimation of conjunction necessarily follows. Moreover, the
same model was able to account for several related empirical findings, such
as the disjunction fallacy, event dependencies, order e↵ects, and unpacking
e↵ects. . . ” (Pothos & Busemeyer, 2013)

G.3.a Failure of commutativity

The “Clinton-Gore experiment.” A Gallup poll asked “Is Clinton hon-
est?” and “Is Gore honest?” Results depended on the order in which they
were asked:
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order Clinton Gore
Clinton — Gore 50% 68%
Gore — Clinton 57% 60%

This is also a common characteristic of everyday judgment; it is also common
in the assessment of evidence for a hypothesis. QP explains this as follows.
The “Yes” basis vectors have a smaller angle reflecting an expected correla-
tion between the answers (since Clinton and Gore ran together). The initial
state vector is a little closer to the |Gore Yesi vector reflecting the assump-
tion that Gore’s honesty is a priori more likely than Clinton’s. You can see
this by looking at the green projection onto |Gore Yesi, which is longer than
its blue projection onto |Clinton Yesi. Note further that the two-step blue
projection onto |Clinton Yesi is longer than the direct projection onto it.
That is, judging Gore to be honest increases the probability of also judging
Clinton to be honest.

G.3.b Violations of the sure-thing principle

“The sure thing principle is the expectation that human behavior ought
to conform to the law of total probability.” (Pothos & Busemeyer, 2013)
In 1992 Shafir and Tversky reported experiments showing violations of the
sure-thing principle in the one-shot prisoner’s dilemma: The subject has to
decide whether to cooperate or defect, as does their opponent. This is a
typical payo↵ matrix; it shows the payo↵ for you and your opponent for each
pair of choices:

opponent
# you cooperate defect

cooperate 3, 3 0, 5
defect 5, 0 1, 1

If you are told what your opponent is going to do, then you should defect.
This is what subjects usually do. If you don’t know, then the optimal strategy
is still to defect. This is the “sure thing”: you should defect in either case.
However, some subjects decide to cooperate anyway (thus violating the sure-
thing principle). One explanation is “wishful thinking.” If you have a bias
toward cooperation, you might suppose (in the absence of evidence) that
your opponent has a similar bias.

The QP explanation is as follows. Suppose | Ci and | Di are the states of
knowing that your opponent will cooperate and defect, respectively. Suppose
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PC and PD are projections representing your decision to cooperate or defect.
Under the condition where you know what your opponent is going to do, the
probability of you deciding to defect in the two cases is:

P{you defect} = kPD| Cik2,

P{you defect} = kPD| Dik2.

In the unknown condition, we can suppose the state is | i = 1p
2

(| Ci+| Di).
Hence, in this case the probability of you deciding to defect is:

P{you defect} =

���� 1p
2
(PD| Ci + PD| Di)

����2

=
1

2
(h C | + h D|)P †

DPD(| Ci + | Di)

=
1

2
kPD| Cik2 +

1

2
kPD| Dik2 + h D | P †

DPD |  Ci.

The interference term h D | P †
DPD |  Ci could be positive or negative, in the

latter case decreasing the probability below unity.

G.3.c Asymmetric similarity

In 1977 Tversky showed that similarity judgments violate metric axioms, in
particular, symmetry.

China-Korea experiment. For example, North Korea was judged more
similar to China, than China was judged to be similar to North Korea:

Sim(North Korea,China) > Sim(China,North Korea).

The QP explanation is that concepts correspond to subspaces of various
dimensions, with the dimension of the subspace roughly corresponding to
the number of known properties of the concept (i.e., how much someone
knows about it). The judgment of the similarity of A to B is modeled by the
projection of the initial state into A and then into B. It’s assumed that the
initial state is neutral with respect to A and B (i.e., the subject hasn’t been
thinking about either). If | i is the initial state, then

Sim(A,B) = kPBPA| ik2 = P{A && B}.

The subjects in this case are assumed to be more familiar with China than
with North Korea, so the China subspace is larger (see Fig. III.46). When
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Pothos and Busemeyer (2011), whose results indicate that, as long as one subspace has a 

greater dimensionality than another, on average the transition from the lower 

dimensionality subspace to the higher dimensionality one would retain more amplitude 

than the converse transition (it has not been proved that this is always the case, but note 

that participant results with such tasks are not uniform).  
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Figure 4. Figure 4a corresponds to the similarity of Korea to China and 4b to the 
similarity of China to Korea. Projecting to a higher dimensionality subspace last (as in Figure III.46: QP model of China – (North) Korea experiment. [fig. from

PB]

North Korea is compared to China, more of its amplitude is retained by the
final projection into the higher dimensional subspace corresponding to China:
Fig. III.46(a). In the opposite case, the projection into the lower dimensional
North Korea subspace loses more amplitude: Fig. III.46(b). This is not
universally true.

G.4 Cognition in Hilbert space

Pothos & Busemeyer (2013) defend the application of QP in a function-first
or top-down approach to modeling cognition.31 This is done by postulating
vectors in a low-dimensional space. I argue that consideration of the high-
dimensional complex-valued wavefunction underlying the state vector will
expand the value of QP in cognitive science.

31Material in this section is adapted from MacLennan (2013), my commentary on Pothos
& Busemeyer (2013).



188 CHAPTER III. QUANTUM COMPUTATION

G.4.a QM premises

To this end, application of QP in cognitive science would be aided by im-
porting two premises from quantum mechanics:

The first premise is that the fundamental reality is the wavefunction. In
cognitive science this corresponds to postulating a spatially-distributed pat-
tern of neural activity as the elements of the cognitive state space. Therefore
the basis vectors used in QP are in fact basis functions for an infinite (or
very high) dimensional Hilbert space.

The second important fact is that the wavefunction is complex-valued
and that wavefunctions combine with complex coe�cients. This is the main
reason for interference and other non-classical properties. The authors ac-
knowledge this, but do not make explicit use of complex numbers in the
target article.

G.4.b Possible neural substrates

What is the analog of the complex-valued wavefunction in neurophysiology?
There are several possibilities, but perhaps the most obvious is the distri-
bution of neural activity across a region of cortex; even a square millimeter
of which can have hundreds of thousands of neurons. The dynamics will be
defined by a time-varying Hamiltonian, with each eigenstate being a spatial
distribution of neurons firing at a particular rate. The most direct represen-
tation of the magnitude and phase (or argument) of a complex quantity is
frequency and phase of neural impulses.

G.4.c Projection

Possible neural mechanisms: Pothos & Busemeyer (2013) specify that a
judgment or decision corresponds to measurement of a quantum state, which
projects it into a corresponding subspace, but it is informative to consider
possible mechanisms. For example, the need to act definitely (such as coming
to a conclusion in order to answer a question) can lead to mutually compet-
itive mechanisms, such as among the minicolumns in a macrocolumn, which
creates dynamical attractors corresponding to measurement eigenspaces. Ap-
proach to the attractor amplifies certain patterns of activity at the expense
of others. Orthogonal projectors filter the neural activity and win the com-
petition with a probability proportional to the squared amplitude of the
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patterns to which they are matched. (In the case where the phases of neu-
ral impulses encode complex phases, matching occurs when the phases are
delayed in such a way that the impulses reinforce.) The winner positively
reinforces its matched signal and the loser negatively reinforces the signal to
which it is matched. Regardless of mechanism, during collapse the energy of
the observed eigenstate of the decision (measurement) operator receives the
energy of the orthogonal eigenstates (this is the e↵ect of renormalization).
The projection switches a jumble of frequencies and phases into a smaller,
more coherent collection, corresponding to the answer (observed) eigenspace.

No inherent bases: The target article suggests that a QP model of a
process begins by postulating basis vectors and qualitative angles between
alternative decision bases (significantly, only real rotations are discussed).
As a consequence, a QP model is treated as a low-dimensional vector space.
This is a reasonable, top-down strategy for defining a QP cognitive model,
but it can be misleading. There is no reason to suppose that particular
decision bases are inherent to a cognitive Hilbert space. There may be a
small number of ”hard-wired” decisions, such as fight-or-flight, but the vast
majority are learned. Certainly this is the case for decisions corresponding
to lexical items such as (un-)happy and (un-)employed.

Creation/modification of observables: Investigation of the dynamics
of cognitive wavefunction collapse would illuminate the mechanisms of deci-
sion making but also of the processes by which observables form. This would
allow modeling changes in the decision bases, either temporary through con-
text e↵ects or longer lasting through learning. Many decision bases are ad
hoc, as when we ask, “Do you admire Telemachus in the Odyssey?” How such
ad hoc projectors are organized requires looking beneath a priori state basis
vectors to the underlying neural wavefunctions and the processes shaping
them.

G.4.d Incompatible decisions

The commutator and anti-commutator: In quantum mechanics the
uncertainty principle is a consequence of non-commuting measurement oper-
ators, and the degree of non-commutativity can be quantified (see Sec. B.7,
p. 93). Two measurement operators P and Q commute if PQ = QP , that
is, if the operator PQ � QP is identically 0. If they do not commute, then
PQ � QP measures the degree of non-commutativity. This is expressed in
quantum mechanics by the “commutator” [P,Q] = PQ�QP . It is relatively
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easy to show that this implies an uncertainty relation: �P �Q � |h[P,Q]i|.
That is, the product of the uncertainties on a state is bounded below by
the absolute mean value of the commutator on the state. Suppose H is
a measurement that returns 1 for |happyi and 0 for |unhappyi, and E is
a measurement that returns 1 for |employedi and 0 for |unemployedi. If
|employedi = a|happyi + b|unhappyi, then the commutator is

[H,E] = ab

✓
0 1

�1 0

◆
.

The absolute mean value of this commutator (applied to a state) gives a
minimum joint uncertainty. If we could measure [P,Q] for various pairs of
questions, P and Q, we could make quantitative empirical predictions of the
joint uncertainty in decisions.

Might we design experiments to measure the commutators and so quantify
incompatibility among decisions? Certainly there are di�culties, such as
making independent measurements of both PQ and QP for a single subject,
or accounting for intersubject variability in decision operators. But making
such measurements would put more quantitative teeth into QP as a cognitive
model.

G.4.e Suggestions

Pothos & Busemeyer (2013) do an admirable job of defending QP as a fruitful
top-down model of decision making, but I believe it would be more valuable
if it paid greater attention to the complex-valued wavefunction that under-
lies QP in both quantum mechanics and cognition. This would allow a more
detailed account of the origin of interference e↵ects and of the structure of
both learned and ad hoc decision operators. Finally, the treatment of incom-
patible decisions can be made more rigorous by treating them quantitatively
as noncommuting operators.

G.5 Conclusions

You might wonder why it is so important to understand the less-then-perfect
inferential abilities of humans. There are at least two reasons, scientific and
technological. First, it is important to understand human inference as both
pure and applied science. It reveals much about our human nature, and
specifically provides hints as to how the brain works. From a more applied



G. QUANTUM PROBABILITY IN COGNITION 191

perspective, we need to understand how humans determine their actions in
order to predict (and even influence) human behavior. In terms of technology,
it might seem that the last thing we might want to do would be to emulate
in our machine intelligence the “imperfect, fallacious” reasoning of humans.
It might be the case, however, that QP-based reasoning is better than CP
for real-time purposeful action in natural, complex situations, where the
premisses of CP are inaccurate.


