
B. FILTERING MODELS 213

Figure IV.9: Graph G
2

for Lipton’s algorithm (with two variables, x and y).
[source: Lipton (1995)]

B.2 Lipton: SAT

In this section we will discuss DNA solution of another classic NP-complete
problem, Boolean satisfiability, in fact the first problem proved to be NP-
complete.6

B.2.a Review of SAT problem

In the Boolean satisfiability problem (called “SAT”), we are given a Boolean
expression of n variables. The problem is to determine if the expression is
satisfiable, that is, if there is an assignment of Boolean values to the variables
that makes the expression true.

Without loss of generality, we can restrict our attention to expressions in
conjunctive normal form, for every Boolean expression can be put into this
form. That is, the expression is a conjunction of clauses, each of which is a
disjunction of either positive or negated variables, such as this:

(x
1

_ x0
2

_ x0
3

) ^ (x
3

_ x0
5

_ x
6

) ^ (x
3

_ x0
6

_ x
4

) ^ (x
4

_ x
5

_ x
6

),

For convenience we use primes for negation, for example, x0
2

= ¬x
2

. In
the above example, we have n = 6 variables m = 4 clauses. The (possibly
negated) variables are called literals.

B.2.b Data representation

To apply DNA computation, we have to find a way to represent potential
solutions to the problem as DNA strands. Potential solutions to SAT are

6This section is based on Richard J. Lipton (1995), “DNA solution of hard computa-
tional problems,” Science 268: 542–5.

214 CHAPTER IV. MOLECULAR COMPUTATION

n-bit binary strings, which can be thought of as paths through a particular
graph Gn (see Fig. IV.9). For vertices ak, xk, x

0
k, k = 1, . . . , n, and an+1

,
there are edges from ak to xk and x0

k, and from xk and x0
k to ak+1

. Binary
strings are represented by paths from a

1

to an+1

. A path that goes through
xk encodes the assignment xk = 1 and a path through x0

k encodes xk = 0.
The DNA encoding of these paths is essentially the same as in Adleman’s
algorithm.

B.2.c Lipton’s Algorithm

algorithm Lipton:

Input: Suppose we have an instance (formula) to be solved: I = C
1

^ C
2

^
· · · ^ Cm. The algorithm will use a series of “test tubes” (reaction vessels)

T
0

, T
1

, . . . , Tm and T i
1

, T
i

1

, . . . , T i
m, T

i

m, for i = 0, . . . , n.

Step 1 (initialization): Create a test tube T
0

of all possible n-bit binary
strings, encoded as above as paths through the graph.

Step 2 (clause satisfaction): For each clause Ck, k = 1, . . . ,m: we will
extract from Tk�1

only those strings that satisfy Ck, and put them in Tk.
(These successive filtrations in e↵ect do an AND operation.) The goal is
that the DNA in Tk satisfies the first k clauses of the formula. That is,
8x 2 Tk 8 1 j k : Cj(x) = 1. Here are the details.

For k = 0, . . . ,m � 1 do the following steps:

Precondition: The strings in Tk satisfy clauses C
1

, . . . , Ck.

Let ` = |Ck+1

| (the number of literals in Ck+1

), and suppose Ck+1

has the
form v

1

_ · · · _ v`, where the vi are literals (positive or negative variables).
Our goal is to find all strings that satisfy at least one of these literals. To

B. FILTERING MODELS 215

accomplish this we will use an extraction operation E(T, i, a) that extracts
from test tube T all (or most) of the strings whose ith bit is a.

Let T
0

k = Tk. Do the following for literals i = 1, . . . , `.

Positive literal: Suppose vi = xj (some positive literal). Let T i
k = E(T

i�1

k , j, 1)
and let a = 1 (used below). These are the paths that satisfy this positive
literal, since they have 1 in position j.

Negative literal: Suppose vi = x0
j (some negative literal). Let T i

k =

E(T
i�1

k , j, 0) and let a = 0. These are the paths that satisfy this nega-
tive literal, since they have 0 in position j.

In either case, T i
k are the strings that satisfy literal i of the clause. Let T

i

k =

E(T
i�1

k , j,¬a) be the remaining strings (which do not satisfy this literal).
Continue the process above until all the literals in the clause are processed.
At the end, for each i = 1, . . . , `, T i

k will contain the strings that satisfy literal
i of clause k.

Combine T 1

k , . . . , T
`
k into Tk+1

. (Combining the test tubes e↵ectively does
OR.) These will be the strings that satisfy at least one of the literals in clause
k + 1.

Postcondition: The strings in Tk+1

satisfy clauses C
1

, . . . , Ck+1

.

Continue the above for k = 1, . . . ,m.

Step 3 (detection): At this point, the strings in Tm (if any) are those that
satisfy C

1

, . . . , Cm, so do a detect operation (for example, with PCR and gel
electrophoresis) to see if there are any strings left. If there are, the formula
is satisfiable; if there aren’t, then it is not.
⇤

If the number of literals per clause is fixed (as in the 3-SAT problem),
then performance is linear in m. The main problem with this algorithm is the

216 CHAPTER IV. MOLECULAR COMPUTATION

e↵ect of errors, but imperfections in extraction are not fatal, so long as there
are enough copies of the desired sequence. In 2002, Adelman’s group solved
a 20-variable 3-SAT problem with 24 clauses, finding the unique satisfying
string.7 In this case the number of possible solutions is 220 ⇡ 106. Since the
degree of the specialized graph used for this problem is small, the number
of possible paths is not excessive (as it might be in the Hamiltonian Path
Problem). They stated, “This computational problem may be the largest
yet solved by nonelectronic means,” and they conjectured that their method
might be extended to 30 variables.

7Ravinderjit S. Braich, Nickolas Chelyapov, Cli↵ Johnson, Paul W. K. Rothemund,
Leonard Adleman, “Solution of a 20-Variable 3-SAT Problem on a DNA Computer,”
Science 296 (19 Apr. 2002), 499–502.

