
B. FILTERING MODELS 217

B.3 Test tube programming language

Filtering algorithms use a small set of basic DNA operations, which can
be extended to a Test Tube Programming Language (TTPL), such as was
developed in the mid 90s by Lipton and Adleman.

B.3.a Basic Operations

DNA algorithms operate on “test tubes,” which are multi-sets of strings over
⌃ = {A, C, T, G}. There are four basic operations (all implementable):

Extract (or separate): There are two complementary extraction (or
separation) operations. Given a test tube t and a string w, +(t, w) returns
all strings in t that have w as a subsequence:

+(t, w)
def

= {s 2 t | 9u, v 2 ⌃⇤ : s = uwv}.

Likewise, �(t, w) returns a test tube of all the remaining strings:

�(t, w) def

= t � +(t, w) (multi-set di↵erence).

Merge: The merge operation combines several test tubes into one test
tube:

[(t
1

, t
2

, . . . , tn)
def

= t
1

[t
2

[· · · [tn.

Detect: The detect operation determines if any DNA strings remain in
a test tube:

detect(t)
def

=

⇢
true, if t 6= ;
false, otherwise

.

Amplify: Given a test tube t, the amplify operation produces two copies
of it: t0, t00 amplify(t). Amplification is a problematic operation, which
depends on the special properties of DNA and RNA, and it may be error
prone. Therefore it is useful to consider a restricted model of DNA computing
that avoids or minimizes the use of amplification.

The following additional operations have been proposed:
Length-separate: This operation produces a test tube containing all

the strands less than a specified length:

(t, n)
def

= {s 2 t | |s| n}.

218 CHAPTER IV. MOLECULAR COMPUTATION

Position-separate: There are two position-separation operations, one
that selects for strings that begin with a given sequence, and one for sequences
that end with it:

B(t, w)
def

= {s 2 t | 9v 2 ⌃⇤ : s = wv},
E(t, w)

def

= {s 2 t | 9u 2 ⌃⇤ : s = uw}.

B.3.b Examples

AllC: The following example algorithm detects if there are any sequences
that contain only C:

procedure [out] = AllC(t, A, T, G)
t –(t, A)
t –(t, T)
t –(t, G)
out detect (t)

end procedure

HPP: Adelman’s solution of the HPP can be expressed in TTPL:

procedure [out] = HPP(t, vin, vout)
t B(t, vin) //begin with vin
t E(t, vout) //end with vout
t (t, 140) //correct length
for i=1 to 5 do //except vin and vout
t +(t, s[i]) //contains vertex i

end for
out detect(t) //any HP left?

end procedure

SAT: Programming Lipton’s solution to Sat requires another primitive
operation, which extracts all sequences for which the jth bit is a 2 2:
E(t, j, a). Recall that these are represented by the sequences xj and x0

j.
Therefore:

E(t, j, 1) = +(t, xj),

E(t, j, 0) = +(t, x0
j).

B. FILTERING MODELS 219

procedure [out] = Sat(t)
for k = 1 to m do // for each clause
for i = 1 to n do // for each literal
if C[k][i] = xj // i-th literal in clause k
then t[i] E(t,j,1)
else t[i] E(t,j,0)

end if
end for
t merge(t[1], t[2], . . . , t[n]) // solutions for clauses 1..k

end for
out detect(t)

end procedure

220 CHAPTER IV. MOLECULAR COMPUTATION

B.4 Parallel filtering model

The parallel filtering model (PFM) was developed in the mid 90s by Martyn
Amos and colleagues to be a means of describing DNA algorithms for any
NP problem (as opposed to Ableson’s and Lipton’s algorthms, which are
specialized to particular problems). “Our choice is determined by what we
know can be e↵ectively implemented by very precise and complete chemical
reactions within the DNA implementation.”8 All PFM algorithms begin
with a multi-set of all candidate solutions. The PFM di↵ers from other DNA
computation models in that removed strings are discarded and cannot be
used in further operations. Therefore this is a “mark and destroy” approach
to DNA computation.

B.4.a Basic operations

The basic operations are remove, union, copy, and select.
Remove: The operation remove(U, {S

1

, . . . , Sn}) removes from U any
strings that contain any of the substrings Si. Remove is implemented by two
primitive operations, mark and destroy:

Mark: mark(U, S) marks all strands that have S as a substring. This is
done by adding S as a primer with polymerase to make it double-stranded.

Destroy: destroy(U) removes all the marked sequences from U . This is
done by adding a restriction enzyme that cuts up the double-stranded part.
These fragments can be removed by gel electrophoresis, or left in the solution
(since they won’t a↵ect it). Restriction enzymes are much more reliable than
other DNA operations, which is one advantage of the PFM approach.

Union: The operation union({U
1

, . . . , Un}, U) combines in parallel the
multi-sets U

1

, . . . , Un into U .
Copy: The operation copy(U, {U

1

, . . . , Un}) divides multi-set U into n
equal multi-sets U

1

, . . . , Un.
Select: The operation select(U) returns a random element of U . If U = ;,

then it returns ;.
Homogeneous DNA can be detected and sequenced by PCR, and nested

PCR can be used in non-homogeneous cases (multiple solutions). All of
these operations are assumed to be constant-time. Periodic amplification
(especially after copy operations) may be necessary to ensure an adequate

8Amos, p. 50.

B. FILTERING MODELS 221

5.6 Implementation of the Parallel Filtering Model 117

5.6 Implementation of the Parallel Filtering Model

Here we describe how how the set operations within the Parallel Filtering
Model described in Section 3.2 may be implemented.

Remove

remove(U, {Si}) is implemented as a composite operation, comprised of the
following:

• mark(U, S). This operation marks all strings in the set U which contains
at least one occurrence of the substring S.

• destroy(U). This operation removes all marked strings from U .

mark(U, S) is implemented by adding to U many copies of a primer corre-
sponding to S (Fig. 5.7b). This primer only anneals to single strands contain-
ing the subsequence S. We then add DNA polymerase to extend the primers
once they have annealed, making only the single strands containing S double
stranded (Fig. 5.7b).

Polymerase extends

(a)

(b)

(c)

(d)

Primer block

Restrict Restrict Restrict

Restriction site Target sequence

Fig. 5.7. Implementation of destroy

We may then destroy strands containing S by adding the appropriate restric-
tion enzyme. Double-stranded DNA (i.e. strands marked as containing S) is
cut at the restriction sites embedded within, single strands remaining intact

Figure IV.10: Remove operation implemented by mark and destroy. [source:
Amos]

number of instances. Amos et al. have done a number of experiments to
determine optimum reactions parameters and procedures.

B.4.b Permutations

Amos et al. describe a PFM algorithm for generating all possible permuta-
tions of a set of integers.

algorithm Permutations:

Input: “The input set U consists of all strings of the form p
1

i
1

p
2

i
2

· · · pnin
where, for all j, pj uniquely encodes ‘position j’ and each ij is in {1, 2, . . . , n}.
Thus each string consists of n integers with (possibly) many occurrences of
the same integer.”9

9Amos, p. 51.

222 CHAPTER IV. MOLECULAR COMPUTATION

Iteration:

for j = 1 to n� 1 do
copy(U, {U

1

, U
2

, . . . , Un})
for i = 1, 2, . . . , n and all k > j
in parallel do remove(Ui, {pjij 6= pji, pki})

// Ui contains i in jth position and no other is
union({U

1

, U
2

, . . . , Un}, U)
end for
Pn U

In the preceding, remove(Ui, {pjij 6= pji, pki}) means to remove from Ui all
strings that have a pj value not equal to i and all strings containing pki for any
k > j. For example, if i = 2 and j = n� 1, this remove operation translates
to remove(U

2

, {pn�1

1, pn�1

3, pn�1

4, . . . , pn�1

n, pn2}). That is, it eliminates
all strings except those with 2 in the n � 1 position, and eliminates those
with 2 in the n position. At the end of iteration j we have:

↵z }| {
p

1

i
1

p
2

i
2

· · · pjij pj+1

ij+1

· · · pnin| {z }
�

where ↵ represents a permutation of j integers from 1, . . . , n, and none of
these integers i

1

, . . . , ij are in �.
Amos shows how to do a number of NP-complete problems, including

3-vertex-colorability, HPP, subgraph isomorphism, and maximum clique.

