C Formal models

C. 1 Sticker systems

C.1.a Basic operations

The sticker model was developed by Rosweis et al. in the mid-1990s. It depends primarily on separation by means of hybridization and makes no use of strand extension and enzymes. It implements a sort of random-access binary memory. Each bit position is represented by a substrand of length m. A memory strand comprises k contiguous substrands, and so has length $n=k m$ and can store k bits. Sticker strands or stickers are strands that are complementary to substrands representing bits. When a sticker is bound to a bit, it represents 1 , and if no sticker is bound, the bit is 0 . Such a strand, which is partly double and partly single, is called a complex strand.

Computations begin with a prepared library of strings. A (k, l) library uses the first $l \leq k$ bits as inputs to the algorithm, and the remaining $k-l$ for output and working storage. Therefore, the last $k-l$ are initially 0 . There are four basic operations, which act on multi-sets of binary strings:

Merge: Creates the union of two tubes (multi-sets).
Separate: The operation separate (N, i) separates a tube N into two tubes: $+(N, i)$ contains all strings in which bit i is 1 , and $-(N, i)$ contains all strings in which bit i is 0 .

Set: The operation $\operatorname{set}(N, i)$ produces a tube in which every string from N has had its i th bit set to 1 .

Clear: The operation clear (N, i) produces a tube in which every string from N has had its i th bit cleared to 0 .

C.1.b Set cover problem

The set cover problem is a classic NP-complete problem. Given a finite set of p objects S, and a finite collection of subsets of $S\left(C_{1}, \ldots, C_{q} \subset S\right)$ whose union is S, find the smallest collection of these subsets whose union is S. For an example, consider $S=\{1,2,3,4,5\}$ and $C_{1}=\{3,4,5\}, C_{2}=$ $\{1,3,4\}, C_{3}=\{1,2,5\}, C_{4}=\{3,4\}$. In this case there are three minimal solutions: $\left\{C_{1}, C_{3}\right\},\left\{C_{3}, C_{4}\right\},\left\{C_{2}, C_{3}\right\}$.

algorithm Minimum Set Cover:

Data representation: The memory strands are of size $k=p+q$. Each strand represents a collection of subsets, and the first q bits encode which subsets are in the collection; call them subset bits. For example 1011 represents $\left\{C_{1}, C_{3}, C_{4}\right\}$ and 0010 represents $\left\{C_{3}\right\}$. Eventually, the last p bits will represent the union of the collection, that is, the elements of S that are contained in at lease one subset in the collection; call them element bits. For example, 010110110 represents $\left\{C_{2}, C_{4}\right\}\{1,3,4\}$.

Library: The algorithm begins with the $(p+q, q)$ library, which must be initialized to reflect the subsets' members.

Step 1 (initialization): For all strands, if the i subset bit is set, then set the bits for all the elements of that subset. Call the result tube N_{0}. This is accomplished by the following code:

Initialize $(p+q, q)$ library in N_{0}
for $i=1$ to q do
separate $\left(+\left(N_{0}, i\right),-\left(N_{0}, i\right)\right) \quad / /$ separate those with subset i
for $j=1$ to $\left|C_{i}\right|$ do
$\operatorname{set}\left(+\left(N_{0}, i\right), q+c_{i}^{j}\right) \quad / /$ set bit for j th element of set i
end for
$N_{0} \leftarrow \operatorname{merge}\left(+\left(N_{0}, i\right),-\left(N_{0}, i\right)\right) / /$ recombine
end for

Step 2 (retain covers): Retain only the strands that represent collections that cover the set. To do this, retain in N_{0} only the strands whose last p bits are set.
for $i=q+1$ to $q+p$ do
$N_{0} \leftarrow+\left(N_{0}, i\right) \quad / /$ retain those with element i
end for

Figure IV.11: Sorting of covers by repeated separations. [source: Amos, Fig. 3.4]

Step 3 (isolate minimum covers): Tube N_{0} now holds all covers, so we have to somehow sort its contents to find the minimum cover(s). Set up a row of tubes $N_{0}, N_{1}, \ldots, N_{q}$. We will arrange things so that N_{i} contains the covers of size i; then we just have to find the first tube with some DNA in it.

Sorting: For $i=1, \ldots, q$, "drag" to the right all collections containing C_{i}, that is, for which bit i is set (see Fig. IV.11). This is accomplished by the following code: ${ }^{10}$
for $i=0$ to $q-1$ do
for $j=i$ down to 0 do

$$
\text { separate }\left(+\left(N_{j}, i+1\right),-\left(N_{j}, i+1\right)\right) / / \text { those that do \& don't have } i
$$

[^0]\[

$$
\begin{array}{ll}
\quad N_{j+1} \leftarrow \operatorname{merge}\left(+\left(N_{j}, i+1\right), N_{j+1}\right) & / / \text { move those that do to } N_{j+1} \\
\quad N_{j} \leftarrow-\left(N_{j}, i+1\right) & / / \text { leave those that don't in } N_{j} \\
\text { end for } & \\
\text { end for }
\end{array}
$$
\]

Detection: Find the minimum i such that N_{i} contains DNA; N_{i} contains the minimum covers.

The algorithm is $\mathcal{O}(p q)$.

C. 2 Splicing systems

It has been argued that the full power of a TM requires some sort of string editing operation. Therefore, beginning with Tom Head (1987), a number of splcing systems have been defined. The splicing operations takes two strings $S=S_{1} S_{2}$ and $T=T_{1} T_{2}$ and performs a "crossover" at a specified location, yielding $S_{1} T_{2}$ and $T_{1} S_{2}$. Finite extended splicing systems have been shown to be computationally universal (1996).

The Parallel Associative Memory (PAM) Model was defined by Reif in 1995. It is based on a restricted splicing operation called parallel associative matching (PA-Match) operation, which is named Rsplice. Suppose $S=S_{1} S_{2}$ and $T=T_{1} T_{2}$. Then,

$$
\operatorname{Rsplice}(S, T)=S_{1} T_{2}, \quad \text { if } S_{2}=T_{1},
$$

and is undefined otherwise. The PAM model can simulate nondeterministic TMs and parallel random access machines.

[^0]: ${ }^{10}$ Corrected from Amos p. 60.

