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Context and Motivation

• Traditional ANNs are useful for non-linear problems, but
struggle with temporal problems.

• Recurrent Neural Networks show promise for temporal
problems, but the models are very complex and difficult,
expensive to train.

• Reservoir computing provides a model of neural
network/microcircuit for solving temporal problems with much
simpler training.
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Artificial Neural Networks
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• Useful for learning non-linear
f (xi ) = yi .

• Input layers takes vectorized input.

• Hidden layers transform the input.

• Output layer indicates something
meaningful (e.g. binary class,
distribution over classes).

• Trained by feeding in many
examples to minimize some
objective function.

1source: wikimedia
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Feed-forward Neural Networks

• Information passed in one direction from input to output.

• Each neuron has a weight w for each of its inputs and a single
bias b.

• Weights, bias, input used to compute the output:

output = 1
1+exp(−

∑
j wjxj−b) .

• Outputs evaluated by objective function (e.g. classification
accuracy).

• Backpropagation algorithm adjusts w and b to minimize the
objective function.
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Recurrent Neural Networks
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Figure: The network state and resulting output change with time.

• Some data have temporal dependencies across inputs (e.g.
time series, video, text, speech, movement).

• FFNN assume inputs are independent and fail to capture this.
• Recurrent neural nets capture temporal dependencies by:

1. Allowing cyclic connections in the hidden layer.
2. Preserving internal state between inputs.

• Training is expensive; backpropagation-through-time is used
to unroll all cycles and adjust neuron parameters.

2http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Continuous Activation vs. Spiking Neurons

How does a neuron produce its output?

• Continuous activation neurons

1. Compute an activation function using inputs, weights, bias.
2. Pass the result to all connected neurons.

• Spiking neurons

1. Accumulate and store inputs.
2. Only pass the results if a threshold is exceeded.

• Advantages
• Proven that spiking neurons can compute any function

computed by sigmoidal neurons with fewer neurons (Maass,
1997).
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Conceptual Introduction

Figure: Reservoir Computing: construct a reservoir of random recurrent
neurons and train a single readout layer.
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History

Random networks with a trained readout layer

• Frank Rosenblatt, 1962; Geoffrey Hinton, 1981; Buonamano,
Merzenich, 1995

Echo-State Networks

• Herbert Jaeger, 2001

Liquid State Machines

• Wolfgang Maass, 2002

Backpropagation Decorrelation3

• Jochen Steil, 2004

Unifying as Reservoir Computing

• Verstraeten, 2007

3Applying concepts from RC to train RNNs

http://link.springer.com/chapter/10.1007/978-3-642-70911-1_20
http://www.cs.utoronto.ca/~hinton/absps/semantic81.pdf
https://www.ncbi.nlm.nih.gov/pubmed/7863330
https://www.ncbi.nlm.nih.gov/pubmed/7863330
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://courses.cs.tamu.edu/rgutier/cpsc636_s10/maas2002liquidStateMachines.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.161.9279&rep=rep1&type=pdf
http://www.sciencedirect.com/science/article/pii/S089360800700038X
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Successful Applications

Broad Topics

• Robotics controls, object tracking, motion prediction, event
detection, pattern classification, signal processing, noise
modeling, time series prediction

Specific Examples

• Venayagamoorthy, 2007 used an ESN as a wide-area power
system controller with on-line learning.

• Jaeger, 2004 improved noisy time series prediction accuracy
2400x over previous techniques.

• Salehi, 2016 simulated a nanophotonic reservoir computing
system with 100% speech recognition on TIDIGITS dataset.
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Liquid State Machines vs. Echo State Networks

Primary difference: neuron implementation

• ESN: neurons do not hold charge, state is maintained using
recurrent loops.

• LSM: neurons can hold charge and maintain internal state.

• LSM formulation is general enough to encompass ESNs.
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LSM Formal Definition

4 5

• A filter maps between two functions of time u(·) 7→ y(·).
• A Liquid State Machine M defined M = 〈LM , f M〉.

• Filter LM and readout function f M .

• State at time t defined xM(t) = (LMu)(t).
• Read: filter LM applied to input function u(·) at time t

• Output at time t defined y(t) = (Mu)(t) = f M(xM(t))
• Read: the readout function f applied to the current state xM(t)

4Maass, 2002
5Joshi, Maass 2004
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LSM Requirements Th. 3.1 Maass 2004

Filters in LM satisfy the point-wise separation property

Class CB of filters has the PWSP with regard to input functions from Un

if for any two functions u(·), v(·) ∈ Un with u(s) 6= v(s) for some s ≤ 0,
there exists some filter B ∈ CB such that (Bu)(0) 6= (Bv)(0).

Intuition: there exists a filter that can distinguish two input functions from one
another at the same time step.

Readout f M satisfies the universal approximation property

Class CF of functions has the UAP if for any m ∈ N, any set X ⊆ Rm,
any continuous function h : X 7→ R, and any given ρ > 0, there exists
some f in CF such that |h(x)− f (x)| ≤ ρ for all x ∈ X .

Intuition: any continuous function on a compact domain can be uniformly
approximated by functions from CF .



Background Reservoir Computing Liquid State Machines Current and Future Research Summary

Examples of Filters and Readout Functions

Filters Satisfying Pointwise Separation Property

• Linear filters with impulse responses h(t) = e−at , a > 0

• All delay filters u(·) 7→ ut0(·)
• Leaky Integrate and Fire neurons

• Threshold logic gates

Readout functions satisfying Universal Approximation Property

• Simple linear regression

• Simple perceptrons

• Support vector machines
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Building, Training LSMs

In General

• Take inspiration from known characteristics of the brain.

• Perform search/optimization to find a configuration.

Example: Simulated Robotic Arm Movement (Joshi, Maass 2004)

• Inputs: x,y target, 2 angles, 2 prior torque magnitudes.

• Output: 2 torque magnitudes to move the arm.

• 600 neurons in a 20 x 5 x 6 grid.

• Connections chosen from distribution favoring local
conections.

• Neuron and connection parameters (e.g. firing threshold)
chosen based on knowledge of rat brains.

• Readout trained to deliver torque values using linear
regression.
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Figure: Reservoir architecture and control loop from Joshi, Maass 2004
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Research Trends

1. Hardware implemenations: laser optics and other novel
hardware to implement the reservoir.

2. Optimizing reservoirs: analytical insight and techniques to
optimize a reservoirs for specific task. (Current standard is
intuition and manual search.)

3. Interconnecting modular reservoirs for more complex tasks.
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Summary

• Randomly initialized reservoir and a simple trained readout
mapping.

• Neurons in the reservoir and the readout map should satisfy
two properties for universal computation.

• Particularly useful for tasks with temporal data/signal.

• More work to be done for optimizing and hardware
implementation.
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